Study on the resistance to chlorpyrifos in Microcerotermes diversus (Isoptera: Termitidae)

Document Type : Research Paper


1 Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, I. R. Iran

2 Department of Plant Productions and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Khuzestan, I. R. Iran



Microcerotermes diversus Silvestri, is an important termite in Khuzestan province with a broad range of foraging. In recent years, control of underground termites has been more based on the application of chemicals which has increased pest insecticide resistance. In this study, the resistance of different populations of termites to chlorpyrifos was investigated using estimated LC50 and measuring the activity of two acetylcholinesterase (AChE) and glutathione-s-transferase enzymes. Four populations of M. diversus with different histories of organophosphorus insecticide spraying were studied. Populations A (Am Altamir1), B (Am Altamir2), and C (Mollasani) were collected from date palm groves with 30 and 10-year histories of organophosphorus insecticide spraying, as well as without spraying history, respectively. Population D (Ramin University) was collected from orange trees, three weeks after spraying with chlorpyrifos. The bioassay results showed that the highest and lowest LC50 values were observed in populations A and C, respectively. Moreover, the activity of AChE using acetylthiocholine iodide, propionylthiocholine iodide, and butyrylthiocholine iodide substrates was higher in the populations with chlorpyrifos spraying history, with the highest activity in population A. It was also demonstrated that the AChE activity with acetylthiocholine iodide substrate was higher than the activity of this enzyme with butyrylthiocholine iodide and the propionyl choline substrates in the populations with 30 and 10-year history of spraying. The Michaelis constant (Km) and maximum velocity (Vmax) values of AChE as two important kinetic factors, indicated the highest affinity of this enzyme to the substrate in population A.


Article Title [Persian]

مطالعه مقاومت به کلرپایریفوس در موریانهMicrocerotermes diversus (Isoptera: Termitidae)

Authors [Persian]

  • الهه روانشادی 1
  • فاطمه یاراحمدی 1
  • امین لطفی جلال آبادی 2
  • فریده خان میرزا 1
1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ج.ا. ایران
2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ج.ا. ایران
Abstract [Persian]

موریانه Microcerotermes diversus Silvestri موریانه ­ای مهم در استان خوزستان می‌باشد که دامنه­ ی جستجوگری وسیعی دارد. در سال­های اخیر، مبارزه با موریانه­ ی زیرزمینی بیشتر بر مبنای کاربرد سموم شیمیایی بوده، که منجر به افزایش مقاومت به حشره­کش ­ها در این آفت شده است. در این مطالعه، مقاومت جمعیت­ های مختلف این موریانه به حشره ­کش کلرپیریفوس با کمک تعیین مقادیر LC50 این حشره­کش برای جمعیت­ های مختلف مورد آزمایش و محاسبه فعالیت دو آنزیم استیل کولین استراز و گلوتاتیون-اس- ترانسفراز مورد ارزیابی قرار گرفت. چهار جمعیت از M. diversus با تاریخچه­ متفاوتی از کاربرد حشره ­کش­ های فسفره آلی مورد استفاده قرار گرفتند. جمعیت A (ا­م­اتمیر 1)، جمعیت B (ام­التمیر 2) و جمعیت c (ملاثانی) از نخلستان هایی که به ترتیب دارای سابقه 30 ساله و 10 ساله سمپاشی با حشره کشهای فسفره آلی و بدون کاربرد این حشره کش ها بودند جمع ­آوری شدند. جمعیت D ( دانشگاه رامین) از درختان نارنج سه هفته بعد از سم­پاشی با کلرپیریفوس جمع­آوری شد. نتایج سنجش زیستی نشان داد که بیشترین و کمترین مقادیر LC50 به ترتیب در جمعیت­ های A و C وجود دارد. علاوه­ براین، میزان فعالیت استیل کولین استراز تعیین شده با استفاده از سوبستراهای استیل تیوکولین آیوداید، پروپینیل تیوکولین آیوداید و بوتریل­تیونیل آیوداید در جمعیت ­های با سابقه کاربرد حشره ­کش  کلرپایریفوس بیشتر بود (بیشترین میزان در جمعیت A). همچنین نشان داده شد که فعالیت استیل کولین استراز در جمعیت­ های  با سابقه 30 و 10 ساله کاربرد حشره­ کش با سوبسترای استیل تیوکولین آیوداید بیشتر از غعالیت این آنزیم با سوبستراهای پروپینیل تیوکولین آیوداید و بوتریل­تیونیل آیوداید  بود. مقدار ثابت میکائلیس (Km) و مقدار حداکثر سرعت (Vmax) آنزیم استیل کولین استراز به عنوان دو عامل مهم کنتیک، بیانگر بیشترین تمایل این آنزیم به سوبسترا در جمعیت A بود.

Keywords [Persian]

  • ارگانوفسفره‌ها
  • استیل کولین استراز
  • گلوتاتیون-اس-ترانسفراز
  • مقاومت به حشره‌کش‌ها
  • موریانه
Abbott, W.S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Askari-Saryazdi, G., Hejazi, M. J., Ferguson, J. S., & Rashidi, M. R. (2015). Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: cross-resistance patterns, stability and biochemical mechanisms. Pesticide Biochemistry and Physiology, 124, 86-92.
Behdad, E. (1984). Pests of fruit crops in Iran. Tehran: Sepehr publication.
Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cheraghi, A., Habibpour, B., & Mossadegh, M. S. (2013). Application of bait treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin for the control of Microcerotermes diversus Silv. Psyche, :  2013, 865102.
Elango, G., Rahuman, A. A., Kamaraj, C., Bagavan, A., Zahir, A. A., Santhoshkumar, T., & Rajakumar, G. (2012). Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanusIndustrial Crops Production, 36(1), 524-530.
Ellman, G. L., Courtney, K. D., Andres, J. V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemistry and Pharmacology, 7, 88-95.
Feyereisen, R. (1995). Molecular biology of insecticide resistance. Toxicological Letter, 82, 83-90.
Habibpour, B., Ekhtelat, M., Khocheili, F., & Mossadegh, M. S. (2010). Foraging population and territory estimates for Microcerotermes diversus (Isoptera: Termitidae) through mark—release—recapture in Ahwaz (Khouzestan, Iran). Journal of Economic Entomology, 103(6), 2112-2117.
Habig, W. H., Pabst, M. J., & Jakoby, W. (1974). Glutathione S-Transferases the first enzymatic step in mercapturic acid formation. Journal of Biology and Chemistry, 249(22), 7130-7139.
Iqbal, N., & Saeed, S. (2013). Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pakistan Journal of Zoology, 45(3), 709-713.
Khan Mirza, F., Yarahmadi, F., Jalal-Abadi, A. L., & Meraaten, A. A. (2020). Enzymes mediating resistance to chlorpyriphos in Aphis fabae (Homoptera: Aphididae). Ecotoxicology and Environmental Safety, 206, 111335.
Ghadamyari, M., Talebi, K., Mizuno, H., & Kono, Y. (2008). Oxydemeton-methyl resistance, mechanisms, and associated fitness cost in green peach aphids (Hemiptera: Aphididae). Journal of Economic Entomology, 101(4), 1432-1438.
Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemistry Society, 56(3), 658-666.
Marcel, V., Palacios, L. G., Pertuy, C., Masson, P., & Fournier, D. (1998). Two invertebrate acetycholinesterase show activation followed by inhibition with substrate concentration. Biochemistry, 329(2), 329-334.
Muthusamy, R., Ramkuma, G., Karthi, S., & Shivakumar, M. S. (2014). Biochemical mechanisms of insecticide resistance in field population of Dengue vector Aedes aegypti (Diptera: Culicidae). International Journal of Mosquito Research, 2(1), 1-4.
Radic, Z., Reiner, E., & Taylor, P. (1991). Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivative. Molecular Pharmacology, 39, 98-104.
Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays Biochemistry, 59, 1-41. doi: 10.1042/bse0590001. 
Russell, R. J., Claudianos, C., Campbell, P. M., Horne, I., Sutherland, T. D., & Oakeshott, J. G. (2004). Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology, 79(3), 84-93.‏
Sabry, K. H., & Abdel-Aziz, N. F. (2013). Resistance and enzyme assesment of the pink bollworm, Pectinophora gossypiella (Saunders) to spinosad. Journal of Animal Plant Science, 23(1), 136-142.
Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63(8), 959-972.
Vontas, J. G., Cosmidis, N., Louka, M., Tsakas, S., Hejazi, M. J., Ayoutanti, A., & Hemingway, J. (2001). Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology, 71, 124-132.
Wellington, S. M., Berger, M., Bass, C., Balbino, V. Q., Amaral, M. H. P., Campos, M. R., & Siquera, H. A. A. (2015). Status of pyrethroid resistance and mechanisms in Brazillian populatins of Tuta absoluta. Pesticide Biochemistry and Physiology, 122(3), 8-14.
Wilce, M. C., & Parker, M. W. (1994). Structure and function of glutathione S-transferases. Biochemistry and Biophysics, 1205(1), 1-18.
Yeoh, B. H., & Lee, C. Y. (2007). Tunneling responses of the Asian subterranean termite, Coptotermes gestroi in termiticide-treated sand (Isoptera: Rhinotermitidae). Sociobiology, 50(2), 457-468.
Yerushalmi, N., & Cohen, E. (2002). Acetylcholinesterase of the California red scale Aonidiella aurantii Mask: Catalysis, inhibition, and reactivation. Pesticide Biochemistry and Physiology, 72, 133-141.
Zamani, P. H., Sajedi, R., Ghadamyari, M., & Memarizadeh, N. (2014). Resistance mechanisms to chlorpyrifos in Iranian populations of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 16(2), 277-289.
Zhu, K. Y., & Clark, M. J. (1994). Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochemistry and Molecular Biology, 24, 453-461.
Zhu, Y. C., West, S., Snodgrass, G., & Luttrell, R. (2011). Variability in resistance-related enzyme activities in field populations of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry Physiology, 99(3), 265-273.