Effect of three commercial bio-fertilizers prepared with Pseudomonas on yield and morphophysiological traits of lettuce (Lactuca sativa L.)

Document Type : Research Paper

Authors

1 Department of Agronomy, Shahr- e- Qods Branch, Islamic Azad University, Tehran, I. R. Iran

2 Department of Agronomy, Karaj Branch, Islamic Azad University, Karaj, I. R. Iran

3 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Alborz, I. R. Iran

4 Department of Agronomy, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, I. R. Iran

Abstract

Bio-fertilizers are microbial inoculants or a combination of carriers of effective microbial strains with high efficiency to provide one or more nutrients needed by the plant, which are important materials as reducing agents to reduce the environmental damage of chemical fertilizers, to reduce diseases, to improve the soil structure, to stimulate plant growth and to increase the quantity and quality of the crops. This study was conducted to investigate the effect of three commercial bio-fertilizers, including Pseudomonas aeruginosa, P. putida, and P. fluorescens, on some morphological and physiological traits of lettuce under greenhouse conditions. The experiments were held on Nuclear Agriculture Research School in a completely randomized design (CRD) with four replications. The results indicated that inoculation of lettuce at growth stage with these biological fertilizers caused a significant increase in plant growth components such as plant height, leaf number, plant diameter, dry and fresh weights. In the case of physiological indicators, the use of bio-fertilizers increased expression of total protein, and also improved the production of oxidative enzymes (peroxidase and polyphenol oxidase) in the leaf compared to the control. According to the results of this study, it can be concluded that the use of bio-fertilizers contributes to the development of organic agriculture which in turn improves the quantity and quality of the product.

Keywords


Article Title [Persian]

تاثیرسه نوع کودزیستی تجاری تهیه شده ازباکتری سودوموناس برعملکرد و برخی صفات مورفوفیزیولوژیک گیاه کاهو

Authors [Persian]

  • منیژه رستمی نیا 1
  • داود حبیبی 2
  • سمیرا شهبازی 3
  • بهزاد ثانی 1
  • علیرضا پازکی 4
1 گروه زراعت، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ج. ا. ایران
2 گروه زراعت، واحد کرج، دانشگاه آزاد اسلامی، کرج، ج. ا. ایران
3 پژوهشکده کشاورزی هسته ای، پژوهشگاه علوم و فنون هسته ای، البرز، ج. ا. ایران
4 گروه زراعت، واحد یادگار امام خمینی(ره) شهرری، دانشگاه آزاد اسلامی، تهران، ج. ا. ایران
Abstract [Persian]

کودهای زیستی، مایه میکروبی یا یک ترکیب حامل سوش های میکروبی موثر با راندمان بالا برای تامین یک یا چند عنصر غذایی مورد نیاز گیاه می باشد که دارای اهمیتی چون کاهش زیان های زیست محیطی کودهای شیمیایی، کاهش بیماری ها، بهبود ساختمان خاک و تحریک رشد گیاه و افزایش کمی و کیفی محصول می گردند. این مطالعه به منظوربررسی تأثیر سه نوع کود زیستی تجاری شامل سودوموناس آئروجینوزا، سودوموناس پوتیدا، سودوموناس فلورسنس  بر برخی صفات مورفوفیزیولوژیک گیاه کاهو در شرایط گلخانه انجام شد. آزمایشات در پژوهشکده کشاورزی هسته ای ودر قالب یک طرح کاملا تصادفی درچهار تکرار انجام شد. نتایج نشان داد که مایه زنی نشاهای کاهو با کودهای زیستی مذکور، باعث افزایش معنی دار فاکتورهای رشدی مانند ارتفاع گیاه، تعداد برگ، قطر گیاه و وزن خشک و وزن تر گیاه گردید. در مورد شاخص های فیزیولوژیک، مصرف کودهای زیستی باعث بهبود تولید آنزیم های اکسیدانی و تجمع بالاتر پروتئین در برگ درمقایسه باشاهد شد. با توجه به نتایج این مطالعه ، استفاده از کودهای زیستی به توسعه کشاورزی ارگانیک کمک می کند که باعث بهبود کمی و کیفی محصول می شود.

Keywords [Persian]

  • واژه‏های کلیدی:
  • کودزیستی سودوموناس کشاورزی پایدار عملکرد
Abbas, Z., Zia, M. A., Ali, S., Abbas, Z., Waheed, A., Bahadur, A., Hameed, T., Iqbal, A., Muhammad, I., Roomi, S., Ahmad, M. Z., Sultan, T. (2013). Integrated effect of plant growth promoting rhizobacteria, phosphate solubilizing bacteria and chemical fertilizers on growth of maize original research article. International Journal of Agriculture and Crop Sciences, 6(13), 913-921.
Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Fabra, A., & Taurian, T. (2015). Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L) growth and phosphorus acquisition. Symbiosis, 66(2), 89-97.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
Asghar, H., Zahir, Z., Arshad, M., & Khaliq, A. (2002). Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35(4), 231-237.
Banaei-Asl, F., Farajzadeh, D., Bandehagh, A., & Komatsu, S. (2016). Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomic, 1864(9), 1222-1236.
Banchio, E., Bogino, P. C., Zygadlo, J., & Giordano, W. (2008). Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochemical Systematics and Ecology, 36(10),766-771.
Bashan, Y., Holguin, G., & De-Bashan, L. E. (2004). Azospirillum-plant relationships: Physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50(8), 521-577.
Bates, L. S., Waldren, R. P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
Biswas, J., Ladha, J., & Dazzo, F. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal, 64, 1644-1650.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Chamangasht, S., Ardakani, M. R., Khavazi, K., Abbaszadeh, B., & Mafakheri, S. (2012). Improving lettuce (Lactuca sativa L.) growth and yield by the application of biofertilizers. Annals of Biological Research, 3(4), 1876-1879.
Chance, B., & Maehly, A. C. (1955). Assay of catalases and peroxidases. Methods in Enzymology,2, 764-775.
Chen, C., Belanger, R. R, Benhamou, N., & Paulitz, T. C. (2000). Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56(1), 13-23.
Dashawn, V. K., & Kumar, P. (2013). Production of plant growth promoting substance by pseudomonads. Journal of Academia and Industrial Research (JAIR), 2(4), 221-225.
De Freitas, J., & Germida, J. (1992). Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biology and Biochemistry, 24(11), 1137-1146.
Ehteshami, S. M. R., Aghaalikhani, M., Chaichi, M. R., & Khavazi, K. (2009). Effect of phosphate biofertilizers on yield and yield components of grain corn (Zea mays L. S.C.704) under water deficit stress conditions. Iranian Journal of Field Crop Science, 40(1), unpaginated. Retrieved from: https://www.researchgate.net/publication/291831532
Esmaeil, Y. A. M. P. (2007). Effects of ( Azotobacter and Azosprillium ) inoculants and chemical fertilizers on growth and productivity of canola (Brassica napus L). Asian Journal of Plant Sciences, 6(1),77-82.
Fasciglione, G., Casanovas, E. M., Yommi, A., Sueldo, R. J., & Barassi, C. A. (2012). Azospirillum improves lettuce growth and transplant under saline conditions. Journal of the Science of Food and Agriculture, 92(12), 2518-2523.
Frommel, M., Nowak, J., & Lazarovits, G. (1993). Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant and Soil, 150(1), 51-60.
Gholami, A., Shahsavani, S., & Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. International Journal of Biological and Life Science, 1(1), 35-40.
Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology,  190(1), 63-68.
Glick, B. R., Liu, C., Ghosh, S., & Dumbroff, E. B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Soil Biology and Biochemistry, 29(8), 1233-1239.
Han, H., & Lee, K. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210-215.
Hirel, B., Tétu, T., Lea, P. J., & Dubois, F. (2011). Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability, 3(9), 1452-1485.
Islam, F., Yasmeen, T., Ali, Q., Ali, S., Arif, M. S., Hussain, S., Rizvi, H. (2014). Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicology and Environmental Safety, 104, 285-293.
Jiang, Y., & Huang, B. (2000). Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Science, 40(5), 1358-1362.
Jung, W. J., Mabood, F., Kim, T. H., & Smith, D. .L. (2007). Induction of pathogenesis-related proteins during biocontrol of Rhizoctonia solani with Pseudomonas aureofaciens in soybean (Glycine max L. Merr.) plants. BioControl, 52(6), 895-904.
Kar, M., & Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57(2), 315-319.
Khoramdel, S., Kouchaki, A. R., Nasiri, M. M., & Ghorbani, R. (2008). Application effects of biofertilizers on the growth indices of black cumin (Nigella sativa L.). Iranian Journal of Field Crop Research, 6(2), 285-294.
Khosravi, A., Zarei, M., & Ronaghi, A. (2017). Effect of phosphate solubilizing bacterium, vermicompost and phosphate sources on growth of lettuce in a calcareous soil. Journal of Soil Biology, 5(1(, 81-93.
Kloepper, J., & Schroth, M. (1978). Association of in vitro antibiosis with inducibility of increased plant growth by Pseudomonas spp.(Abstr). Phytopathol. News, 12, 136.
Kohler, J., Caravaca, F., Carrasco, L., & Roldán, A. (2007). Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology, 35(3), 480-487.
Kouchaki, A. R., Tabrizi, L., & Ghorbani, R. (2008). Effect of biofertilizers on agronomic and quality criteria of Hyssop (Hyssopus officinalis). Iranian Journal Of Field Crops Research, 6(1), 127-137.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680-685.
Maheshwari, D. K., Dheeman, S., & Agarwal, M. (2015). Phytohormone-producing PGPR for sustainable agriculture. In Maheshwari D. K, (Ed.), Bacterial metabolites in sustainable agroecosystem (pp 159-182). Cham: Springer International Publishing.
Marius, S., Octavita, A., Eugen, U., & Vlad, A. (2005). Study of a microbial inoculation on several biochemical indices in sunflower (Helianthus anuus L.). Genetics and Molecular Biology, 12(2), 11-14.
Nakkeeran, S., Fernando, W. D., & Siddiqui, Z. A. (2005). Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In Siddiqui, Z. A. (Ed.) PGPR: Biocontrol and biofertilization (pp. 257-296). Dordrecht: Springer.
Noumavo, P. A., Kochoni, E., Didagbé, Y.O., Adjanohoun, A., Allagbé, M., Sikirou, R., Gachomo, E. W., Kotchoni, and S. O., Baba-Moussa, L. (2013). Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. American Journal of Plant Sciences, 4(05), 1013-1021.
Nowak, J. (1998). Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cellular & Developmental Biology-Plant, 34(2), 122-130.
Pourebtehaj, M., Habibi, D., Paknejad, F., Fazeli, F., & Davoodi, F. M. (2012). Effect of plant growth promoting rhizobacteria and foliar application of silicic acid and amino acids on destruction antioxidant enzyme activity of barley under drought stress (Hordeum Vulgar L). Iranian Journal of Agronomy and Plant Breeding, 8(2), 147-160.
Reddy, M., Ilao, R. I., & Faylon, P. S. (2014). Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. England: Cambridge Scholars Publishing.
Rodriguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339.
Saghafi, K., Ahmadi, J., Asgharzadeh, A., & Bakhtiari, S. (2013). The effect of microbial inoculants on physiological responses of two wheat cultivars under salt stress. International Journal of Advanced Biological and Biomedical Research, 1(4), 421-431.
Sangwan, N., Farooqi, A., Shabih, F., & Sangwan, R. (2001). Regulation of essential oil production in plants. Plant Growth Regulation, 34(1), 3-21.
Shaalan, M. (2005). Influence of biofertilizers and chicken manure on growth, yield and seeds quality of (Nigella Sativa L.) plants. Egyptian Journal Agricultural Research, 83, 811-828.
 Shaharoona, B., Arshad, M., Zahir, Z. A., & Khalid, A. (2007). "Performance of Pseudomonas spp. containing ACC deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer." Soil Biology and Biochemistry, 38(9), 2971-2975.
Sayyed, R., Chincholkar, S., Reddy, M., Gangurde, N., & Patel, P. (2013). Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In Maheshwari, D. K,  (Ed.),  Bacteria in Agrobiology: Disease Management  (pp. 449-471). London: Springer.
Scarpellini, M., Franzetti, L., & Galli, A. (2004). Development of PCR assay to identify Pseudomonas fluorescens and its biotype. Federation of European Microbiological Societies Microbiology Letters, 236(2), 257-260.
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1-14.
Shokri Gharelo, R., Bandehagh, A., Toorchi, M., & Farajzadeh, D. (2016). Canola 2-dimensional proteom profile under osmotic stress and inoculation with Pseudomonas fluorescens FY32. Plant Cell Biotechnology and Molecular Biology, 17, 257-266.
Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248.
Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: Looking back over 30 years. Phytopathology, 97(2), 250-256.
Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C., & Wong, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125(1), 155-166.