Agro-physiological parameters for improving drought tolerance in rapeseed genotypes to cultivate in saline soils

Document Type : Research Paper

Authors

1 Horticulture and Crops Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, I. R. Iran

2 Department of Seed and Plant Improvement Institute, AREEO, Karaj, I. R. Iran

Abstract

 This study was conducted to introduce agro-physiological traits for improving drought tolerant rapeseed winter genotypes for cultivation in saline areas. Eighteen rapeseed genotypes were evaluated under non-stressed and drought-stressed conditions from flowering and seed filling stages to seed maturity for two years (2012-2014) at the saline soils (EC=6.7 dS m-1) in Agricultural and Natural Resources Research and Education Center of East Azarbaijan, Iran. Drought stress significantly decreased pod length, plant height, seed yield, yield components and stomatal conductance and increased canopy temperature.Among the genotypes, significant differences were observed for pod length, the number of seeds in a pod, seed and oil yields, and stomatal conductance. The correlations among the traits were significantly positive. According to the results of genotypes grouping, HW101, L183, L73, and L72 having higher pod length, the number of seeds in a pod, stomatal conductance, seed and oil yields, which were recognized as the promising ones. The results of this study indicated that, the pod length, the number of seeds in a pod and stomatal conductance as simple and easy parameters can be used to select late season drought tolerant rapeseed winter genotypes for cultivation in saline areas. Also, the cluster analysis method was able to discriminate productive genotypes. Water deficit during flowering and seed filling stages, decreased the mean of seed yields by 800 and 584 Kg h-1 during the first year and 1764 and 1154 Kg h-1 during the second year of the experiment, of this study respectively. Thus, it was concluded that the evaluated rapeseed genotypes at the flowering stage were more sensitive to drought compared to the seed filling stage.

Keywords


Article Title [Persian]

پارامتر های آگروفیزیولوژیکی برای توسعه تحمل به خشکی در ژنوتیپ های کلزا جهت کشت در خاک های شور

Authors [Persian]

  • بهمن پاسبان اسلام 1
  • امیر حسین شیرانی راد 2
1 بخش تحقیقات علوم زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی،
2 بخش تحقیقات دانه های روغنی، موسسه تحقیقات اصلاح و تهیه نهال و بذر، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ج. ا. ایران
Abstract [Persian]

مطالعه با هدف معرفی خصوصیات آگروفیزیولوژیکی برای توسعه ژنوتیپ‌های متحمل به‌خشکی کلزای پاییزه جهت کشت در اراضی شور اجرا گردید. هجده زنوتیپ کلزا در شرایط بدون تنش و خشکی واقع شده از مراحل گل‌دهی و پرشدن دانه تا رسیدگی طی دوسال زراعی (94-1392) در خاک‌های شور (dS m-1 7/6 EC=) مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، ایران ارزیابی شدند. تنش خشکی طول خورجین، ارتفاع بوته، عملکرد دانه، اجزای آن و هدایت روزنه را به‌طور معنی‌داری کاهش و دمای تاج پوشش برگی را افزایش داد. بین ژنوتیپ‌ها اختلاف معنی‌داری در طول خورجین، تعداد دانه در خورجین، عملکرد دانه و روغن و هدایت روزنه دیده شد. همبستگی بین این خصوصیات باهمدیگر مثبت و معنی‌دار بودند. طبق نتایج گروه‌بندی ژنوتیپ‌ها، HW101، L183، L73 و L72 با داشتن مقادیر بالاتر طول خورجین، تعداد دانه در خورجین، هدایت روزنه، عملکرد دانه و روغن به‌عنوان ژنوتیپ‌های امید بخش شناسایی شدند. بنابراین طول خورجین، تعداد دانه در خورجین و هدایت روزنه به‌عنوان شاخص‌های ساده و آسان برای گزینش ژنوتیپ‌های پاییزه متحمل به تنش خشکی آخر فصل کلزا جهت کشت در اراضی شور قابل استفاده می‌باشند. همچنین روش تجزیه کلاستر توانست ژنوتیپ‌های با عملکرد بالا را تفکیک کند. به-طور کلی بروز تنش خشکی از مراحل گل‌دهی و پرشدن دانه میانگین عملکرد دانه را به‌ترتیب 800 و 584 گیلوگرم در هکتار طی سال اول و 1764 و 1154 کیلوگرم در هکتار طی سال دوم آزمایش کاهش داد. بنابراین ژنوتیپ‌های کلزا به خشکی واقع شده از مرحله گل‌دهی حساس‌تر از خشکی در مرحله پرشدن دانه بودند.

Keywords [Persian]

  • تجزیه کلاستر
  • عملکرد دانه
  • طول خورجین
  • هدایت روزنه
Arvin, P., Azizi, M., & Soltani, A. (2010). Comparison of yield and physiological indices of spring cultivars of oilseed rape species. Seed and Plant Journal, 25,401-417.
Darjani, A., Shirani-Rad, A. H., Gholipour, S., & Haghighat, A. (2013). Investigating the effects of water stress on yield and yield components of canola winter varieties. Agronomy and Plant Production Journal, 4, 370-374. 
Dejonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156, 51-62.
Din, J., Khan, S. U., Ali, L., & Gurmani, A. R. (2011). Physiological and agronomic response of canola varieties to drought stress. Animal and Plant Science Journal, 21, 78-82.
El ferjani, R., & Soolanayakanahally, R. (2018). Canola responses to drought, heat, and combined stress: Shared and specific effects on carbon assimilation, seed yield, and oil composition. Frontiers in Plant Science, 9, 1224-1241.
El Sabagh, A., Hossein, A., Barutcular, C., Sohidul Islam, M., Ratnasekera, D., Kumar, N., Swaroop Meena, R., Sobhy Gharib, H., Saneoka, H., & Teixeira Dasilva, J. A. (2019). Drought and salinity stress management for higher and sustainable canola (Brassica napus L.) production: A critical review. Australian Journal. of Crop Science, 13(1), 88-97.
Faraji, A., Latifi, N., Soltani, A., & Shirani-Rad, A. H. (2009). Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agricultural Water Management, 96, 132-140.
Feller, U., & Vaseva, I. I. (2014). Extreme climatic events: Impacts of drought and high temperature on physiological processes in agronomically important plants. Frontiers in Environmental Science Journal, 39, 83-94.
Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertisol with variable subsoil NaCl salinity. Agricultural Water Management, 97,148-156.
Gunasekera, C. P., Martin, L. D., Siddique, K. H. M., & Walton, G. H. (2006). Genotype by environment interactions of Indian mustard (Brassica junceae L.) and canola (B. napus L.) in Mediterranean- type environments, 1. Crop growth and seed yield. European Agronomy Journal, 25, 1-12.
Gupta, N., & Thind, S. K. (2015). Improving photosynthetic performance of bread wheat under field drought stress by foliar applied glycine betaine. Journal of Agricultural Science and Technology, 17, 75-86.
Hamzei, J. (2011). Seed, oil and protein yields of canola under combination of irrigation and nitrogen application. Agronomy Journal, 4, 1152-1158. 
Hua, S., Yu, H., Zhang, Y., Lin, B., Ding, H., Zhang, D., Ren, Y., & Chen, Z. H. (2012). Variation of carbohydrates and macronutrients during the flowering stage in canola (Brassica napus L.) plants with contrasting seed oil content. Australian Journal of Crop Science, 6, 1257-1282.
Khayat, M., Lack, S., & Karami, H. (2012). Correlation and path analysis of traits affecting grain yield of canola (Brassica napus L.) varieties.Journal of Basic and Applied Science Research, 2(6), 5555-5562.
Majidi Nasab, H., Siadat, S. A., Naderi, A., Lack, S., & Modhej, A. (2014). The effects of drought stress and nitrogen levels on yield, stomatal conductance and temperature stability of rapeseed (canola) genotypes. Advance in Environmental Biology Journal, 8(10), 1239-1247.
Nowosad, K., Liersch, A., Poplawska, W., & Bocianowski, J. (2016). Genotype by environment interaction for seed yield in rapeseed (Brassica napus L.) using additive main effects and multiplicative interaction model. Euphytica, 208, 187-194.
Pantin, F., Monnet, F., Jannaud, D., Costa, J. M., Renaud, J., & Muller, B. (2013). The dual effect of abscisic acid on stomata. New Phytology Journal, 197, 65-72.
Pasban Eslam, B. (2009). Evaluation of physiological indices, yield and its components as screening techniques for water deficit tolerance in oilseed rape cultivars. Journal of Agricultural Science and Technology, 11, 413-422.
Peltonen-Sainio, P., & Jauhiainen, L. (2008). Association of growth dynamics, yield components and seed quality in long-term trials covering rapeseed cultivation history at high latitudes. Field Crops Research, 108, 101-108.
Rameeh, V. (2012). Ions uptake, yield and yield attributes of rapeseed exposed to salinity stress. Soil Science and Plant Nutrition Journal, 12, 851-861.
Stegman, E. C. (1983). Irrigation scheduling: Applied timing criteria. In Hillel, M. (Ed.). Advances in irrigation, (pp. 1-3). Vol. 2. Fargo. North Dakota: North Dakota University of Agricultural and Applied Science Press.
Su, J. J., Wu, S., Xu, Z. J., Qiu, S., Luo, T. T., Yang, Y. M., Chen, Q. T., Xia, Y. Y., Zou, S., Huang, B. L., & Uang, B. Q. (2013). Comparison of salt tolerance in brassicas and some related species. American Journal of Plant Science, 4, 1911-1917.
Takele, A. (2001). Canopy temperature and excised leaf water loss of tef (Eragrostis tef [Zucc.] Trotter.) cultivars under water deficit conditions at anthesis. Acta Agronomy Hungarica Journal, 49, 109-117.
Yanagawa, A., & Fujimaki, H. (2013). Tolerance of canola to drought and salinity stress in terms of root water uptake model parameters. Journal of Hydrology and Hydro-mechanics, 61(1), 73-80.