Growth, yield index, and photosynthesis traits of sweet pepper grown in vermicompost inoculated with Arbuscular mycorrhiza

Document Type : Full Article

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan I. R. Iran

Abstract

ABSTRACT- The aim of this study was to investigate the effects of “Arbuscular mycorrhizal fungi” (AM fungi) density and different growing media on the growth, photosynthesis parameters and yield of sweet pepper under greenhouse conditions. The experiment was conducted as a factorial plan based on control randomized design (CRD ( by using three growing media, Perlite (PR) and cocopeat (Co) (PR50:Co50 V:V) (C), PR25:Co50: vermicompost (V) 25 (C+V25) and PR25:Co25: V50 (C+V50), and three levels of AM fungi inoculation (0, 1000 and 2000 spores) with three replications. Results indicated that AM fungi inoculation and mixture of vermicompost increased shoot and root fresh weights,Total Suspended Solids (TSS), fruit fresh and dry weights in the C+V50 compared to other treatments. Fruit yield increased more than 100 and 94.95% with AM-fungi inoculation with 2000 spores at C+V25 and V50 treatments, respectively. Mycorrhiza dependency decreased with high application rate of vermicompost, and vermicompost dependency was the highest in non-inoculated plants. With AM-fungi inoculations, the chlorophyll level (SPAD values) was increased in C+V25 by 100%.  Photosynthesis rate was increased in C+V25×M1 significantly compared to other treatments. Nitrogen, phosphorus, and potassium concentrations significantly increased by mycorrhiza inoculation in the high vermicompost ratio.

Keywords


Article Title [Persian]

رشد، شاخص عملکرد و فتوسنتز فلفل دلمه‌ای رشدیافته در ورمی-کمپوست تلقیح شده با Arbuscular mycorrhiza

Authors [Persian]

  • مریم حقیقی
  • محمدرضا برزگر
گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان ، ج. ا. ایران
Abstract [Persian]

چکیده- هدف اصلی این پژوهش بررسی اثرات غلظت­های قارچ مایکوریز(Arbuscular mycorrhiza) و محیط کشت­های مختلف در فاکتورهای رشد، صفات فتوسنتز و عملکرد فلفل دلمه­ای تحت شرایط گلخانه ای بود. این آزمایش بصورت فاکتوریل در قالب طرح کاملا تصادفی با استفاده از 3 محیط کشت، پرلایت(PR) و کوکوپیت(Co) با نسبت حجمی 50 به 50 (C)، نسبت حجمی 25 پرلایت به 50 کوکوپیت و 25 ورمی کمپوست(V)،(V25)و نسبت حجمی 25 پرلایت به 25 کوکوپیت به 50 ورمی کمپوست(V50) و سه سطح مایکوریز(گیاه بدون مایکوریز(M0)، مایکوریز با 1000  (M1)و 2000 (M2)  اسپور و سه تکرار اجرا شد. نتایج نشان داد که تلقیح مایکوریز و مخلوط ورمی­کمپوست وزن تر ریشه و شاخه را افزایش داد. تلقیح مایکوریز با 2000 اسپور به طور معنی­داری حجم ریشه را در تیمار  C+V50 و C+V25 افزایش داد.  برداشت میوه با M2 نسبت به M1 در C+V25 و V50 سریعتر بود. عملکرد میوه با تلقیح 2000 اسپور مایکوریز در محیط کشت V25 و C+V50 افزایش داشت. وابستگی مایکوریز با کاهش کاربرد ورمی­کمپوست کاهش یافت و  بیشترین وابستگی ورمی­کمپوست در گیاهان بدون تلقیح مایکوریز بود. هر دو سطح مایکوریز تلقیح شده شاخص کلروفیل را افزایش داد  و بیشترین افزایش با تلقیح M1 در تیمارهای C و C+V50 بود. M1 به میزان قابل توجهی سرعت فتوسنتز را در V25 C+ افزایش داد و سرعت فتوسنتز در سایر محیط­ها اختلاف معنی­دار نداشت. میزان نیتروژن، فسفر و پتاسیم توسط تلقیح مایکوریز در تیمارهای با ورمی­کمپوست بالا نسبت به بقیه تیمار ها افزایش یافت.

Keywords [Persian]

  • واژه‏های کلیدی:
  • آلومتری عملکرد
  • سرعت فتوسنتز
  • غلظت نیتروژن
  • وابستگی مایکوریز
Ahmadi, A., & Siosemardeh, A. (2005). Investigation on the physiological basis of grain yield and drought resistance in wheat: Leaf photosynthetic rate, SC, and non-stomatal limitations. International Journal of Agricultural Biological, 7(5), 807–811.
Arancon, N. Q., Edwards, C. A., Atiyeh, R., & Metzger, J. D. (2004). Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresource Technology, 93, 139–144.
Atiyeh, R. M., Lee, S, Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84, 7-14.
Bhagat, S., Thakur, A., & Dhaliwal, H. S. (2013). Organic amendments influence growth, buddability and budding success in rough lemon (Citrus jambhiri Lush.). Biological Agriculture and Horticulture, 29, 46-57.
Canellas, L. P., Olivares, F. L., Okorokova Façanha, A. L., & Façanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane H+-ATPase activity in maize roots. Plant Physiology, 130,1951-1957.
Cavender, N. D., Atiyeh, R. M., & Knee, M. (2003). Vermicompost stimulates mycorrhizal colonization of roots of Sorghum bicolor at the expense of plant growth. Pedobiologia, 47, 85–89.
Chatterjee, R., Bandyopadhyay, S., & Jana, J. C. (2014). Evaluation of vegetable wastes recycled for vermicomposting and its response on yield and quality of carrot (Daucus carota L.). International Journal of Recycling of Organic Waste in Agriculture, 3, 60.
Chavez, W., Benedetto, A. D., Civeira, G., & Lavado, R. (2008). Alternative soilless media for growing Petunia _ hybrida and Impatiens wallerana: Physical behavior, effect of fertilization and nitrate losses. Bioresource Technology, 99, 8082-8087.
Conversa, G., Lazzizera, C., Bonasia, A., & Elia, A. (2013). Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils, 49, 691-703.
Duong, T. T., Chris, P., & Marschner, P. (2012). Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant and Soil, 354, 197–209.
Doan, T., Phuong, T. N., Cornelia, R., Nguyene, B. V., & Pascal, J. (2013). Interactions between compost, vermicompost and earthworms influence plant growth and yield:A one-year greenhouse experiment. Scientia Horticulturae, 160, 148-154.
Fernández Gómez, M. G., Quirantes, M., Vivas, M., & Nogales, R. (2012). Vermicompost and/or Arbuscular Mycorrhizal Fungal Inoculation in Relation to Metal Availability and Biochemical Quality of a Soil Contaminated with Heavy Metals. Water Air and Soil Pollution, 223(5), 2707-2718.
 Gutierrez-Miceli, F. A., Santiago Boraz, J., Molina, J. A, Nafate, C. C., Abud Archila, M., Llaven, M. A. O., Rincon
Rosales, R., & Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresource Technology, 98, 2781-2786.
Gutierrez-Miceli, F. A., Gracia Gomez, R. C., Rincon, R. R., Abud Archila, M., Maria Angela, O. L., Gullin Cruz, M. J., & Dendooven, L. (2008). Formulation of liquid fertilizer for sorghum (Sorghum bicolour (L.) Moench) using vermicompost leachate. Bioresource Technology, 99, 6174–6180.
Haghighi, M., Kafi, M., & Fang, P. (2012). Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science, 18 (2), 182-189.
Haghighi, M., Afsharikia, A., Mozafariyan, M., Pessarakli, M., & Bolandnazar, A. (2014). Usage of herbal (Thyme and Chicory) waste as an organic substrate in cucumber production. Communications in Soil Science and Plant Analysis. (In Print).
Hameeda, B., Srijana, M., Rupela, O. P., & Reddy, G. (2007). Effect of bacteria isolated from composts and macrofauna on sorghum growth and mycorrhizal colonization. World Journal of Microbiology and Biotechnology, 23 (6), 883-887.
Jones, J. B. (2004). Hydroponics: A practical guide for the soilless grower. USA: CRC Press.
Kapoor, R., Sharma, D., & Bhatnagar, A. K. (2008). Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116, 227-239.
Liu, Z. H., Jiang, L. H., Li, X. L., Hardter, R., Zhang, W. J., Zhang, Y. L., & Zheng, D. F. (2008). Effect of N and K fertilizers on yield and quality of greenhouse vegetable crops. Pedosphere,18, 496-502.
Martínez, F., Castillo, S., Borrero, C., Pérez, S., Palencia, P., & Avilés, M. (2013). Effect of different soilless growing systems on the biological properties of growth media in strawberry. Scientia Horticulturae, 150, 59-64.
Mobli, M., & Aghdak, P. (2011). Greenhouse Vegetable Growing Technology (Soil and Soil less Culture). Publisher Isfahan:  Arkan Danesh. (In Persian).
Nemec, S. (1992). Plant roots as mycorrhizal fungus inoculum for citrus grown in the fields in Florida. Advances in Horticultural Science, 6, 93-96.
Ortas, I., & Ustuner, O. (2014). Determination of different growth media and various mycorrhizae species on citrus growth and nutrient uptake. Scientia Horticulturae, 166, 84-90.
Oweis, T., Zhang, H., & Pala, M. (2000). Water use efficiency of rainfed and irrigated bread wheat in a Mediterranean environment. Agronomy Journal, 92, 231-238.
Padmavathiamma, P. K., Loretta, Y. L., & Usha, R. K. (2008). An experimental study of vermi-biowaste composting for agricultural soil improvement. Bioresource Technology, 99,1672–1681.
Perner, H., Schwarz, D., Bruns, C., Mader, P., & George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza,17 (5), 469-474.
Planchette, C., Fortin, J.A., & Furlan, V. (1983). Growth response of several plant species to mycorrhiza in soil of moderate fertility. I. Mycorrhizal dependency under field condition. Plant and Soil, 70,199–209.
Poulton, J. L., Koide, R. T., & Stephenson, A. G. (2001). Effects of mycorrhizal infection, soil phosphorus availability and fruit production on the male function in two cultivars of Lycopersicon esculentum. Plant, Cell and Environment, 24, 841-849.
Reuveni, R., Raviv, M., Krasnovsky, A., Freiman, L., Medina, S., Bar, A., & Orion, D. (2002). Compost induces protection against Fusarium oxysporum in sweet basil. Crop Protection,21, 583-587.
Ryan, M. H., Chilvers, G. A, & Dumaresq, D. C. (1994). Colonisation of wheat by VA-mycorrhizal fungi was found to be higher on a farm managed in an organic manner than on a conventional neighbour. Plant and Soil, 160, 33-40.
Salvioli, A., Zouari, I., Chalot, M., & Bonfante, P. (2012). The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biology, 12, 44.
Sylvia, D. M. (1998). Mycorrhizal symbioses. In: Sylvia et al. (Ed.) Principals and applications of soil biology, Prentice Hall.
Ustuner, O., Wininger, S., Gadkar, V., Badani, H., Raviv, M., Dudai, N., Medina, & S., Kapulnik, Y. (2009). Evaluation of Different Compost Amendments with AM Fungal Inoculum for Optimal Growth of Chives. Compost Science & Utilization, 17, 257-265.
Wang, D., Shi, Q., Wang, X., Wei, M., Hu, J., Liu, J., & Yang, F. (2010). Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biologyand Fertility of Soils, 46, 689-696.
Yang, W.Q., Goulart, B.L., Demchak, K., & Li, Y. (2002). Interactive effects of mycorrhizal inoculation and organic soil amendments on nitrogen acquisition and growth of high bush blueberry. American Society for Horticultural Science,127,742-748.
Zhu, X. C., Song, F. B., Liu, S. Q., & Liu, T. D. (2011). Effects of Arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil, 346, 189-199.