Effect of organic and inorganic additives on some chemical properties of vermicompost, earthworm’s biomass and reproduction

Document Type : Full Article

Authors

Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, I.R. Iran

Abstract

ABSTRACT-The enrichment of bedding for vermicomposting systems with organic and inorganic additives is a technique which can promote the quality of produced vermicompost. Phosphate rock and fishmeal are two available and low-cost substances which can be provided easily and inoculation of vermicompost with phosphate solubilizing microorganisms (PSMs) can enhance the availability of their nutrients. In this research, the effect of using phosphate solubilizing bacteria (PSB) (Pseudomonas fluorescens) by adding phosphate rock (0 and 1% W/W) and fishmeal (0 and 1% W/W) on some chemical and biological properties of vermicompost was studied under greenhouse conditions with a factorial arrangement in a completely randomized design with three replications. Phosphate rock application and PSM inoculation decreased N concentration while fishmeal increased it. P concentration increased by adding phosphate rock, fishmeal or PSB or their co-applications. Fishmeal increased micro-nutrients concentration except for Fe. Phosphate rock increased Fe concentration and decreased other micro-nutrients concentration. Electrical conductivity (EC) increased by adding phosphate rock but decreased by fishmeal application. Phosphate rock and fishmeal increased pH. Phosphate rock and PSB decreased the number and weight of earthworms and the number of cocoons. Fishmeal application increased the number and weight of earthworms and number of cocoons. Results indicated that enrichment of vermicompost bedding by additives could increase some essential nutrients and change the growth and biomass of earthworms.

Keywords


Article Title [Persian]

تاثیر افزودنی‌های آلی و معدنی بر برخی خصوصیات شیمیایی ورمی‌کمپوست، زیست توده و تولید مثل کرم‌های خاکی

Authors [Persian]

  • آناهیتا خسروی
  • مهدی زارعی
گروه علوم خاک، دانشکده کشاورزی،دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

چکیده-غنی سازی بستر در سیستم تولیدی ورمی کمپوست با افزودنی های آلی و معدنی می تواند کیفیت ورمی کمپوست تولیدی را افزایش دهد. خاک فسفات و پودر ماهی مواد ارزان و قابل دسترس هستند و  مایه زنی  بستر با ریزجانداران حل کننده فسفات می تواند قایلیت استفاده عناصر غذایی آنها را افزایش دهد. به منظور بررسی تاثیر غنی سازی بستر تولید ورمی کمپوست با خاک فسفات، پودر ماهی و باکتری حل کننده فسفات، آزمایش فاکتوریل در غالب طرح کاملا تصادفی با سه تکرار انجام گردید. عوامل آزمایش شامل دو سطح باکتری حل کننده فسفات (سودوموناس فلورسنس) (بدون مایه زنی و مایه زنی شده)، دو سطح خاک فسفات (صفر و 1 % وزنی) و دو سطح پودر ماهی (صفر و 1% وزنی) بود. نتایج نشان داد که کاربرد خاک فسفات و باکتری موجب کاهش غلظت نیتروژن گردید در حالی که کاربرد پودر ماهی غلظت نیتروژن را در ورمی­کمپوست افزایش داد. کاربرد خاک فسفات، پودر ماهی و باکتری به تنهایی و همزمان سبب افزایش غلظت فسفر شد. کاربرد پودر ماهی موجب افزایش غلظت مس، روی و منگنز شد. خاک فسفات موجب افزایش غلظت آهن و همچنین کاهش مس، روی و منگنز شد. کاربرد خاک فسفات موجب افزایش قابلیت هدایت الکتریکی و کاربرد پودر ماهی موجب کاهش آن شد. به علاوه خاک فسفات و پودر ماهی هردو موجب افزایش پ هاش شدند. از طرف دیگر کاربرد خاک فسفات و باکتری حل کننده فسفات موجب کاهش تعداد و وزن کرم­های خاکی بالغ و همچنین تعداد کوکون گردید. کاربرد پودر ماهی تعداد و وزن کرم و تعداد کوکون را افزایش داد. نتایج نشان داده است که افزودن مواد به بستر قابلیت دسترسی  برخی عناصر غذایی را افزایش و رشد و زیست توده کرمهای خاکی را تغییر داده است.

Keywords [Persian]

  • واژه‏های کلیدی:
  • کوکون
  • پودر ماهی
  • باکتری حل کننده فسفات
  • خاک فسفات
Alikhani, HA., Motesharehzadeh, B., &  Dindarlo, N. (2015). Effect of amount and levels of different organic matters in vermiculture technology. 14th Iranian Soil Science Congress. University of Vali-e-Asr, Rafsanjan, Iran.
Bremner, J.M. (1996). Nitrogen total. In D.L. Sparks, (Ed.), Methods of soil analysis part 3: Chemical methods (pp. 1085-1122). Soil Science Society of America & America Society of Agronomy, Madison, WI.
Busato, J. G., Lima, L. S., Aguiar, N. O., Canellas, L. P., & Olivares, F. L. (2012). Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology, 110, 390–395.
Chapman, H. I., & Pratt, P. F. (1961). Methods Analysis for Soils, Plants and Waters. University of California, Berkeley.
Chaudhary, D. R., Bhandari, S. C., & Shukla, L. M. (2004). Role of vermicompost in sustainable agriculture – A review. Agricultural Reviews, 25 (1), 29 – 39.
Chaudhuri, P. S., Pal, T. K., Bhattacharjee, G., & Dey, S. K. (2000). Chemical changes during vermicomposting (Perionyxexcavatus) of kitchen wastes. Tropical Ecology, 41(1), 107-110.
Deolalikar, A. V., Mitra, A., Bhattacharyee, S., & Chakraborty, S. (2005). Effect of vermicomposting process on metal content of paper mill solid waste. Journal of Environmental Science & Engineering, 47, 81–84.
Dominguez, J., & Edwards, C. A. (2004) Vermicomposting organic wastes: A review. In S.H. Shakir Hanna and W.Z.A. Mikhati, (ed.), Cairo 2004. Soil Zoology for Sustainable Development in the 21st Century. 370-395.
Dominguez, J., Edwards, C. A., & Subler, S. (1997). A comparison of vermicomposting and composting. Biocycle, 38, 57-59
Ebadi, Z., Grami, A., & Sami, K. (2007). Study on earthworm (Eisenia foetida) growth and reproduction in substrates of different agricultural and industrial wastes. Pajouhesh & Sazandegi, 76, 164-170. (In Persian).
Edwards, C. A. (1995). Earthworm. McGraw Hill Encyclopedia, 81–83.
Edwards, C. A. (1988). Breakdown of animal, vegetable, and industrial organic wastes by earthworms. Agriculture, Ecosystems & Environment. 24, 21-31.
Eivazi, F., & Tabatabai, M.A. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9, 167–172.
El Haddad, M. E., Zayed, M. S., El Sayed, G. A. M., Hassanein, M. K., & Abd El Satar, A. M. (2014). Evaluation of compost, vermicompost and their teas produced from rice straw as affected by addition of different supplements. Annals of Agricultural Sciences, 59(2), 243–251.
Evans. A. C. & Guild, W. J. (1948). Studies on the relationships between earthworms and soil fertility .Field population. Annals of Applied Biology, 35, 485-493.
Flack, F. & Hartenstein, R. (1984). Growth of the earthworm Eisenia foetida on microorganisms and cellulose. Soil Biology and Biochemistry,16, 491-495.
Goldstein, A. H. (1986). Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Search Results. American Journal of Alternative Agriculture, 1, 51– 57.
Guoxue, L., Zhang, F., Sun, Y., Wong, J. W. C., & Fang, M. (2001). Chemical evaluation of sewage composting as mature indicator for composting process. Water, Air, and Soil Pollution, 132, 333–345.
Haimi, J., & Huhta, V. (1986). Capacity of various organic residues to support adequate earthworm biomass for vermicomposting. Biology and Fertility of Soils, 2, 23-27.
Hartenstein, R. (1981). Production of earthworms as a potentially economic source of protein. Biotechnology and Bioengineering, 23, 1797-1811.
Hartenstein, R. (1981). Use of Eisenia foetida in organic recycling based on laboratory experiments. In: Appelhof, M. (ed), Workshop on the role of earthworms in the stabilization of organic residues (pp. 155-165). Vol I Proceedings. Beech Leaf Press, Michigan.
Haynes, R. J. (1984). Lime and phosphate in the soil-plant system. Advances in Agronomy, 37, 249-315.
Kaushik, P., & Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with theepigeic earthworm Eisenia foetida. Bioresource Technology, 90, 311-316.
Kharrazi, M., Unesi, H., & Abedini, J. (2012). Effect of corn waste blended with cow dung and paper on vermicompost qualities using Eisenia foetida. Agronomy Journal, 103, 179-191. (In Persian).
Khwairakpam, M., & Bhargava, R. (2009). Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials, 161, 948-954.
Kim, K.Y., Jordan, D., & Mc Donald, G. A. (1998). Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil: effect of carbon sources. Soil Biology and Biochemistry, 30, 995–1003.
Kumar, V., & Narula, N. (1999). Solubilization of inorganic phosphates and growth emergence of wheat as affected by Azotobacter chroococcum. Biology and Fertility of Soils, 28, 301-305.
Kumar, V., & Singh K. P. (2001) Enriching vermicompost by nitrogen fixing and phosphate solubilizing bacteria. Bioresource Technology, 76, 173-175.
Lozcano, C., & Dominguez, J. (2011). The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. Soil Nutrients, 10, 1-23.
Mahantaa. K., Jhaa, D. K., Rajkhowab, D. J., & Kumarb, M. (2012). Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biological Agriculture & Horticulture, 28 (4), 241–250.
Malekzadeh, E. Alikhani, H. A., Savabeghi Firoozabadi, G. R., & Zarei, M. (2012). Bioremediation of cadmium-contaminated soil through cultivation of maize inoculated with plant growth–promoting rhizobacteria. Bioremediation Journal, 16(4), 204-211.
Manyuchi, M. M., & Phiri, A. (2013). Vermicomposting in Solid Waste Management: A Review. International Journal of Scientific Engineering and Technology, 2 (12), 1234-1242.
Mendes, E. G., & Almedia, A. M. (1962). The respiratory metabolism of tropical earthworms. Ш. The influence of oxygen tension and temperature. Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo. Zoologia, 24, 43-65.
Miles, R. D., & Chapman, F. A. (2006). The benefits of fish meal in aquaculture diets. Department of Fisheries and Aquatic Sciences, Florida Cooperative Extension Service publisher, Institute of Food and Agricultural Sciences, University of Florida. FA 122, 1-6.
Mirbolook, A., Lakzian, A., & Haghnia, G. H. (2011). Comparison of chemical, physical characteristics and maturity of produced vermicompost from cow manure treated with sugar beet molasses, aeration and soil. Agronomy Journal, 93, 25-33. (In Persian).
Pattnaik, S., & Reddy, M. V. (2010). Nutrient Status of Vermicompost of Urban Green Waste Processed by Three Earthworm Species—Eisenia foetida, Eudrilus eugeniae, and Perionyx excavates. Applied and Environmental Soil Science, 2010, 1-13.
Premono, E. M., Moawad, M. A., & Vlek, P. L. G. (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indian Journal of Crop Science, 11, 13-23.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In: D. L. Sparks et al. (Ed.).  Methods of Soil Analysis. Part 3. 3rd ed. (pp. 417-436). American Society of Agronomy, Inc: Madison, WI.
Saha, S., Pradhan, K., Sharma, S., & Alappat, B. J. (2008). Compost production from Municipal Solid Waste (MSW) employing bioinoculants. International Journal of Environment and Waste Management, 2, 572-583.
Sharma, S., Pradhan, K., Satya, S., & Vasudevan, P. (2005) Potentiality of Earthworms for Waste Management and in Other Uses – A Review. American Science, 1, 4-16.
Sperber, J. I. (1958). The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research, 9, 778-791.
Theunissen, J. P., Ndakidemi, A., & Laubscher, C. P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of Physical Science, 5(13), 1964-1973.
Thomas, G.W. (1996). Soil pH and soil acidity. In: D. L. Sparks et al. (ed.), Methods of Soil Analysis, part 3. 3rd ed. (pp. 475-490) American Society of Agronomy. Inc: Madison, WI.
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671-677.
Tognetti, C., Laos, F., Mazzarino, M. J., & Hernandez, M. T. (2005) Composting vs. vermicomposting: a comparison of end product quality. Compost Science and Utilization, 13(1), 6–13.
Van kauwenbergh, S. J. (2001). Overview of world phosphate rock production. International Meeting on Direct Application Phosphate rock and Related Appropriate Technology-latest Development and Practical Experiences. Kuala Lampur, Malaysia.
Wan, J. H. C., & Wong, M. H. (2004). Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. Journal of Plant Nutrition and Soil Science, 167, 209–213.
Zarei, M., Saleh Rastin, N., Alikhani, H. A., & Aliasgharzadeh. N. (2006). Response of lentil to co-inoculation with phosphate solubilizing rhizobacteria strains and arbuscular mycorrhizal fungi. Journal of Plant Nutrition, 29, 1509-1522.