Benzyl adenine is more effective than potassium silicate on decreasing the detrimental effects of heat stress in pepper (Capsicum annum cv. PS301)

Document Type : Full Article

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, I. R. Iran

Abstract

ABSTRACT- Heat stress causes flower and fruit abscission in pepper. This study was conducted in the greenhouses of Isfahan University of Technology to evaluate the effect of foliar application of Benzyl adenine (BA) and potassium silicate (K2SiO3) under heat stress condition on bell pepper. Two factorial experiments based on completely randomized design with four concentrations of BA (0, 0.06, 0.6 and 6 ppm) and the second with two levels of K2SiO3 (0 and 5 Mm) both in two temperature treatments (25±2 (optimum) 35±2  (high temperature)) with six replicates were conducted. The results of the study indicated that the use of BA (especially 6 ppm) promoted growth parameters and increased proline, phenol and antioxidant content. Also, application of BA 6 ppm improved cell membrane stability assessed via decreasing electrolyte leakage (EL) and also reduced flower abscission in bell pepper. BA at 6 ppm increased plant height, shoot and root dry weight, proline and total phenol, root fresh weight, potassium (K) concentration and decreased flower abscission. Antioxidant content increased with heat stress in all BA levels. Results of the study indicated that fresh and dry weight of root and K concentration increased with 5 mM K2SiO3. Moreover, root fresh weight and K concentration and antioxidant content increased in 5 mM K2SiO3 under heat stress.

Keywords

Main Subjects


Article Title [Persian]

بنزیل آدنین نسبت به سیلیکات پتاسیم در کاهش اثرات مضرتنش گرما بر فلفل موثرتر است

Authors [Persian]

  • مرجان طاهری
  • مریم حقیقی
گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج. ا. ایران
Abstract [Persian]

چکیده- تنش گرما موجب ریزش گل و میوه در فلفل می­گردد. این پژوهش در گلخانه­های دانشگاه صنعتی اصفهان به منظور ارزیابی تاثیر کاربرد برگی بنزیل آدنین (BA) و سیلیکات پتاسیم (K2SiO3) تحت شرایط تنش گرما بر فلفل دلمه­ای انجام شد. دو آزمایش فاکتوریل بر اساس طرح کاملا تصادفی با چهار غلظت BA (0، 06/0، 6/0و 6 پی پی ام) و دومین بار با دو سطح K2SiO3(0 و 5 میلی­مولار) در دو تیمار دمایی( اپتیمم (2±25) و دمای بالا (2±35)) با شش تکرار انجام شد. نتایج پژوهش نشان داد که استفاده BA (بخصوص غلظت 6 پی­پی­ام) فاکتورهای رشد را بهبود می­بخشد، پرولین، میزان فنول و محتوای آنتی­اکسیدان را افزایش می­دهد. همچنین کاربرد BA با غلظت 6 پی­پی­ام  پایداری غشا سلولی را بهبود می­بخشد یا نشت یونی را در فلفل دلمه­ای را کاهش می­دهد و همچنین ریزش گل را کاهش می­دهد. بنابراین کاربرد BA اثرمنفی تنش گرما را کاهش می­دهد. BA با غلظت 6 پی­پی­ام، ارتفاع گیاه و ریزش گل را بهبود می­بخشد، کاهش وزن تر و خشک شاخساره و ریشه، پرولین و فنول کل را کاهش می­دهد. وزن تر ریشه و غلظت پتاسیم را افزایش و ریزش گل را کاهش می­دهد. محتوای آنتی­اکسیدان با تنش گرما در همه سطوح BA  افزایش می­یابد. نتایج پژوهش نشان می­دهد که وزن تر و خشک ریشه و غلظت پتاسیم با غلظت سیلیکات پتاسیم 5 میلی­مولار افزایش می­یابد. همچنین، در غلظت 5 میلی­مولار سیلیکات پتاسیم ، وزن تر ریشه و غلظت پتاسیم بهبود و محتوای آنتی­اکسیدان تحت تنش گرما افزایش می­یابد.

Keywords [Persian]

  • محتوای آنتی‌اکسیدان
  • پرولین
  • فنول
  • ریزش گل
Abdel Aziz, F. E., El Quesni, E. M., & Farahat, M. M. (2007). Response of vegetative growth and some chemical constituents of Syngonium podophyllum L. to foliar application of thiamin, ascorbic acid and kinetin at Nurbaria. World Journal of Agricultural Sciences, 3, 301-305.
Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, and antioxidant enzymes of soybean. American Journal of Plant Physiology, 5, 350-360.
Amtmann, A., Troufflard, S., & Armengaud, P. (2008). The effect of potassium nutrition on pest and disease resistance in plants. Physiologia Plantarum, 133, 682–691.
Ashraf, M., & Foolad, M. R. (2007).  Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmentaland Experimental Botany, 2, 206-216.
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
Bhatt, R. M., & Srinivasa  Rao, N. K. (2005).  Influence of pod load on response of okra to water stress. Indian Journal of Plant Physiology, 10, 54-59.
Blanchard, M. G., & Runkle, E. S. (2008). Benzyladenine promotes flowering in Doritaenopsis and Phalaenopsis orchids. Journal Plant Growth Regulation, 27(2), 141-150.
Chernyad’ev, I. (2009). The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Applied Biochemistry and Microbiology, 45(4), 351-362.
DiCosmo, F., & Towers, G.H.N. (1984).Stress and secondary metabolism in cultured plant cells.In Phytochemical Adaptations to Stress, 97-175.
Eid, R., & Abou Leila, B. H. (2006). Response of croton plants to gibberellic acid, Benzyl adenine and ascorbic acid application. World Journal of Agricultural Sciences, 2, 174-179.
Eraslan, F., Inal, A., Pilbeam, D. J., & Gunes, A. (2008).  Interactive effects ofsalicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55, 207-219.
Erickson, A. N., & Markhart, A. H. (2002). Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell & Environment, 25(1), 123-130.
Goyal, M., & Asthir, B. (2010). Polyamine catabolism influencesantioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regulation, 1, 13-25.
Hare, P. D., Cress, W. A., & VanStaden, J. (1997). The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regulation, 23(1-2), 79-103.
Haroun, S. A., Shukryshy, W. M., Abbas, M. A., & Mowafy, A. M. (2011). Growth and physiological responses of
Solanumlycopersicum to atonik and Benzyl adenine under vernalized conditions. Journal of Ecology and The Natural Environment, 3(9), 319-331.
Howarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In Ashraf M.,  and Harris P.J.C. (Eds.), Abiotic stresses-plant resistance through breeding and molecular approaches (pp. 277–300). New York:Haworth Press.
Kamenidou, S., Cavins, T. J., & Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394.
Larkindale, J., & Huang, B. (2005).Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in hermotolerance and recovery for creeping bentgrass. Plant Growth Regulation, 47(1), 17-28.
Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 147(2), 422-428.
Liu, X., Huang, B., & Banowetz, G. (2002). Cytokinin effects on creeping bentgrass responses to heat stress. Crop Science, 42(2), 457-465.
Liu, X., & Huang, B. (2005). Root physiological factors involved in cool-season grass response to high soil temperature. Environmentaland Experimental Botany, 53(3), 233-245.
Lutts, S., Bouharmont, J., & Kinet, J. M. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of  Botany-London, 78(3), 389-398.
Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1), 11-18.
Murillo Amador, B., Yamada, S., Yamaguchi, T., Rueda Puente, E., Avila Serrano, N., Garcıa Hernandez, J. L., Lopez Aguilar, R., Troyo Dieguez, E., & Nieto Garibay, A. (2007). Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal of  Agronomy and Crop Science, 193(6), 413-421.
Pei, Z. F., Ming, D. F., Liu, D., Wan, G. L., Geng, X. X., Gong, H. J., & Zhou, W. J. (2009). Silicon Improves the Tolerance to Water-Deficit Stress Induced by Polyethylene Glycol in Wheat (Triticum aestivum L.)Seedling. Journal Plant Growth Regulation, 29(1), 106-115.
Nguyen, P. M., Kwee, E. M., & Niemeyer, E. D. (2010). Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chemstiry, 123(4), 1235-1241.
Rivero, R. M., Ruiz, J. M., Garcıa, P. C., Lopez Lefebre, L. R., Sanchez, E., & Romero, L. (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160(2), 315-321.
Rodriguez, K., Ah Hen, K. S., Vega Galvez, A., Vasquez, V., Quispe, I., Rojas, P., & Lemuns Mondaca, R. (2016). Changes in bioactive components and antioxidant capacity of maqui, Aristoteliachilensis [Mol] Stuntz, berries during drying. LWT-Food Science Technology, 65, 537-542.
Rylott, P. D. & Smith M. L. (1990). Effect of applied plant growth substances on pod set in broad beans (Vicia faba var. major). The Journal of Agricultural Science,  114, 41-47.
Sanchez Moreno, C., Larrauri, J. I., & Saura Calixto, F. A. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 76, 270–276.
Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167(15), 1248-1252.
Singleton, V. L., Orthofer, R., & Lamuela Raventos, R. M. (1999). Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin–Ciocalteaure agent. Methods in Enzymology, 299, 152−178.
Stoller, J., Liptay, A., & Salzman, R. (2012). Composition and method for stress mitigation in plants. U.S. Patent Application, 13/429, 014.
Thomas, J. C., McElwain, E. F., & Bohnert, H. J. (1992). Convergent Induction of Osmotic Stress-Responses' Abscisic Acid, Cytokinin, and the Effects of NaCl. Plant Physiology, 100, 416-423.
Vomacka, L., & Pospisilova, J. (2003). Rehydration of sugar beet plants after water stress: effect of cytokinins. BiologiaPlantarum, 46(1), 57-62.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany, 61(3), 199-223.
Wang, S. Y., & Galletta, G. J. (1998). Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutriton, 21(1), 157-167.
Werner, T., Motyka, V., Strnad, M., & Schmulling, T. (2001). Regulation of plant growth by cytokinin. Proceeding of the National Academy Sciences, 98 (18), 10487-10492.
Xu, S., Li, J., Zhang, X., wei, H., & Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56(3), 274-285.