Potato yield and tuber quality as affected by gibberellic acid and zinc sulfate

Document Type : Full Article

Authors

Department of Horticultural Sciences, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

Abstract
Obtaining high potato (Solanum tuberosum L.) tuber yield through increased number and weight of quality tubers is important for farmers while the quality factors are of interest for food processing industries. Potato processing industries require high quality tubers having the highest possible dry matter, starch and protein contents. A two-year field study was carried out as a factorial experiment in a randomized complete block design during 2013 and 2014.  Gibberellic acid (GA3 at 0, 100, 200 and 400 mg·L-1 levels) and zinc sulfate (at 0, 500, 1000 and 2000 mg·L-1 levels) were foliar sprayed on potato plants 20 and 50 days after tuber sprouting, respectively. There was no significant difference in all measured criteria between two years of experiment. Comparing to control, a 38% increase in total tuber yield resulted from treatment with 200 mg·L-1 GA3 and 1000 mg·L-1 zinc sulfate. The greatest tuber dry matter content (24.33 g·100g-1 fw) obtained from 200 mg·L-1 GA3 plus 2000 mg·L-1 zinc sulfate treatment, while the highest starch contents (32.56 % tuber fresh weight) was obtained from sole application of zinc sulfate at 2000 mg·L-1.Application of GA3 at 400 mg·L-1 and zinc sulfate at 2000 mg·L-1resulted the highest tuber crude protein content of 8.37% tuber dry weight which was over twice as control treatment.  Manipulating plant nutrition and fertilization could be used as a powerful tool to obtain desired quality and quantity of potato tuber.

Keywords


Article Title [Persian]

تأثیرجیبرلیک اسید و سولفات روی بر عملکرد و کیفیت ژوخه سیب‌زمینی

Authors [Persian]

  • جمال جوانمردی
  • فرزاد رسولی
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

چکیده-بدست آوردن عملکرد بالا در سیب زمینی (Solanum tuberosum L.) از طریق افزایش تعداد و وزن غده‌های با کیفیت، از موارد بسیار با اهمیت برای کشاورزان است در حالی‌که ویژگی‌های کیفی غده‌ها بیشتر برای صنایع غذایی و فرآوری مطرح هستند. صنایع فرآوری سیب‌زمینی نیازمند غده‌هایی با کیفیت بالا یعنی بالاترین درصد ماده خشک، نشاسته و پروتئین هستند. پژوهشی به‌صورت  آزمون فاکتوریل در قالب طرح بلوک کامل تصادفی طی دو سال زراعی 1392 و 1393 صورت پذیرفت. جیبرلیک اسید (GA3) در غلظت‌های صفر، 100، 200 و 400 میلی‌گرم در لیتر و سولفات روی در غلظت‌های صفر، 500، 1000 و 2000 میلی‌گرم در لیتر به صورت محلول‌پاشی برگی به ترتیب 20 و 50 روز پس از جوانه‌زنی غده‌ها مورد استفاده قرار گرفتند. نتایج، تفاوت معنی‌داری را از نظر اثر سال بر صفات مورد ارزیابی نشان نداد. در مقایسه با تیمار شاهد، افزایش 38 درصدی در عملکرد کل غده در تیمار با 200 میلی‌گرمGA3  و 1000 میلی‌گرم سولفات روی مشاهده شد. بیشترین محتوای ماده خشک غده‌ها به میزان 33/24 گرم در 100 گرم وزن تر از تیمار 200 میلی‌گرم GA3 و 2000 میلی‌گرم سولفات روی بدست آمد در حالی‌که بیشترین محتوای نشاسته به میزان 56/32 درصد وزن تر از کاربرد 2000 میلی‌گرم سولفات روی به تنهایی حاصل شد. کاربرد 400 میلی‌گرمGA3  و 2000 میلی‌گرم سولفات روی بیشترین پروتئین خام غده‌ها را به میزان 37/8 درصد وزن خشک غده ایجاد نمود که بیش از 2 برابر تیمار شاهد بود. به‌طور کلی ایجاد تغییرات در تغذیه و کوددهی می‌تواند به‌ عنوان ابزاری قدرتمند برای بدست آوردن مقادیر و کیفیت‌‌های مورد نظر در سیب‌زمینی محسوب شود.

Keywords [Persian]

  • واژه های کلیدی: پروتئین خام غده
  • غده بذری
  • غده‌زایی
  • نشاسته
Abdala, G., Castro, G., Miersch, O., & Pearce, D. (2000). Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum), Plant Growth Regulators, 36(2), 121-126.
Alexopoulos, A.A., Akoumianakis, K.A., & Passam, H.C. (2006). The effect of the time and mode of application of gibberellic acid on the growth and yield of potato plants derived from true potato seed. The Science of Food and Agriculture, 86(13), 2189-2195.
AOAC (Association of Official Agricultural Chemists). (1984). Official methods of analysis. 14th ed. Washington, DC.
Bent, G.A., Maragh, P., & Dasgupta, T. (2012). Acrylamide in Caribbean foods–Residual levels and their relation to reducing sugar and asparagine content. Food Chemistry, 133(2), 451-457.
Cakmak, I., Pfeiffer, W.H., & McClafferty, B. (2010). Review: Biofortification of durum wheat with Zinc and Iron. Cereal Chemistry, 87(1), 10-20.
Cao, H., & Shannon, J.C. (1997). Effect of gibberellin on growth, protein secretion, and starch accumulation in maize endosperm suspension cells. Plant Growth Regulation, 16(3), 137-140.
Ewing, E.E. (1995). The role of hormones in potato (Solanum Tuberosum L.) tuberization. In P. J. Davies (Ed.). Plant Hormones: Springer Netherlands.
Ewing, E.E. (1997). Potato. In H. C. Wien (Ed.), The physiology of vegetable crops (pp. 295-343). London: CAB International.
Javanmardi, J.,& Rasuli, F. (2010). Interaction of GA3 and Zinc sulfate on vegetative characteristics of potato plant (Solanum tuberosum cv. Agria). Iranian Journal of Horticultural Sciences,10, 32-38.
Kaur, S., Gupta, A.K., & Kaur, N. (1998). Gibberellic acid and kinetin partially reverse the effect of water stress on germination and seedling growth in chickpea. Plant Growth Regulation, 25(1), 29-33.
Kolomiets, M.V., Hannapel, D.J., Chen, H., Tymeson, M., & Gladon, R.J. (2001). Lipoxygenase is involved in the control of potato tuber development. The Plant Cell Online, 13(3), 613-626.
Mares, D.J., Marscfaner, H., & Krauss, A. (1981). Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum). Physiologia Plantarum, 52(2), 267-274.
Pont Lezica, R. (1970). Evolution des substances de type gibbérellines chez la pomme de terre pendant la tubérisation, en relation avec la longueur du jour et la température. Potato Research, 13(4), 323-331.
Prasad, A.S. (2012). Discovery of human zinc deficiency: 50 years later. Journal of Trace Elements in Medicine and Biology, 26(2), 66-69.
Premabatidevi, R.K. (1998). Effect of IAA, GA3 and kinetin on nitrate reductase and nitrite reductase in the leaves of a tree legume (Parkia javanica Merr.). Indian Journal of Plant Physiology, 3(2), 97-101.
Puzina, T.I. (2004). Effect of zinc sulfate and boric acid on the hormonal status of potato plants in relation to tuberization. Russian Journal of Plant Physiology, 51(2), 209-215.
Saini, R.S., Sharme, K.D., Dhankhar, O.P., & Kaushik, R.A. (2001). Laboratory manual of analytical techniques in horticulture. India: Agrobios.
Sarkar, D. (2008). The signal transduction pathways controlling in planta tuberization in potato: an emerging synthesis. Plant Cell Reports, 27(1), 1-8.
Shah, S.H, & Ahmad, I. (2007). Responses of Nigella sativa to foliar application of gibberellic acid and kinetin. Biologia Plantarum, 51(3), 563-566.
Sharma, N., Kaur, N., & Gupta, A.K. (1998). Effect of chlorocholine chloride sprays on the carbohydrate composition and activities of sucrose metabolising enzymes in potato (Solanum tuberosum L.). Plant Growth Regulation, 26(2), 97-103.
Song, C.Z., Liu, M.Y., Meng, J.F., Chi, M., Xi, Z.M., & Zhang, Z.W. (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules, 20(2), 2536-2554.
Tauberger, E., Fernie, A.R., Emmermann, M., Renz, A., Kossmann, J., Willmitzer, L., & Trethewey, R.N. (2000). Antisense inhibition of plastidial phosphoglucomutase provides compelling evidence that potato tuber amyloplasts import carbon from the cytosol in the form of glucose 6 phosphate. The Plant Journal, 23(1), 43-53.
Taylor, M.A., Mad Arif, S.A., Kumar, A., Davies, H.V., Scobie, L.A., Pearce, S.R., & Flavell, A.J. (1992). Expression and sequence analysis of cDNAs induced during the early stages of tuberisation in different organs of the potato plant (Solanum tuberosum L.). Plant Molecular Biology, 20(4), 641-651.
Thompson, H.C., & Kelly, W.C. (1957). Vegetable crops. NY. Macgrow Hill Book Co. Inc.
Tsegaw, T. (2006). Effect of paclobutrazol on tuberization and other growth stages in potato. (Ph.D. Thesis), University of Pretoria.  
Van Gelder, W.M.J. (1981). Conversion factor from nitrogen to protein for potato tuber protein. Potato Research, 24(4), 423-425.
Vreugdenhil, D., & Helder, H. (1992). Hormonal and metabolic control of tuber formation. In: CM. Karssen, L.C. van Loon and D. Vreugdenhil (eds.), Progress inPlant Growth Regulation. The Netherlands, Kluwer Academic Publishers.
Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. (2006). Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany, 56, 274-285.
Xu, X., van Lammeren, A.A.M., Vermeer, E., & Vreugdenhil, D. (1998). The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 117(2), 575.