Role of soil fertility management on productivity of sesame and cowpea under different cropping systems

Document Type : Full Article


1 Department of Agronomy, Faculty of Agriculture, University of Zabol, Zabol, I. R. Iran.

2 Department of Agronomy, Faculty of Agriculture, University of Guilan, Rasht, I. R. Iran.


ABSTRACT- Declining land productivity associated with decreasing soil organic carbon and nutrients is a significant issue in monoculture production. The field experiment with different rates of fertilizer systems (60 kg ha-1 N + 100 kg ha-1 P, 300 kg ha-1 Bio-organic (organic fertilizer), 3 kg ha-1 Bioumik (biofertilizer), 30 kg ha-1  N + 50 kg ha-1 P + 150 kg ha-1 Bio-organic fertilizer and 30 kg ha-1 N + 50 kg ha-1 P + 1.5 kg ha-1 Bioumik) as main effects and five cropping systems (sole sesame, sole cowpea, 50:50 sesame-cowpea intercropping, 75:25 sesame-cowpea intercropping and 25:75 sesame-cowpea intercropping) as subplot effects were carried out to study the influence of fertilizer systems application on productivity in intercrops and monocultures. Intercropping of 50:50 sesame-cowpea compared to monoculture plots was highly productive in terms of land equivalent ratio (1.03), area time equivalent ratio (1.04) and land use efficiency (155%). Across fertilizer systems, the greater values of land equivalent ratio (1.24), area time equivalent ratio (1.25) and land use efficiency (186%) were obtained from 30 kg ha-1 N + 50 kg ha-1 P + 150 kg ha-1 Bio-organic. The results indicate that fertilizer application rate of 30 kg ha-1 N + 50 kg ha-1 P + 150 kg ha-1 Bio-organic and intercropping of 50:50 sesame-cowpea could be an effective pathway in raising of productivity toward sustainable agriculture through maximum exploitation of the biological potential for efficient acquisition of P, N and other resources.


Main Subjects

Article Title [Persian]

نقش مدیریت حاصلخیزی خاک بر قابلیت تولید کنجد و لوبیا چشم بلبلی تحت شرایط سیستم‌های مختلف کاشت

Authors [Persian]

  • جاسم امینی فر 1
  • محمود رمرودی 1
  • محمد گلوی 1
  • غلامرضا محسن‌آبادی 2
1 گروه زراعت، دانشکده کشاورزی، دانشگاه زابل، زابل، ج. ا. ایران.
2 گروه زراعت، دانشکده کشاورزی، دانشگاه گیلان، رشت، ج. ا. ایران.
Abstract [Persian]

چکیده-  کاهش باروری زمین‌های کشاورزی مرتبط با کاهش مواد آلی خاک و عناصر غذایی، موضوعی مهم در سیستم‌های تک‌کشتی می‌باشد. سیستم مخلوط کنجد و لوبیا چشم بلبلی و مدیریت حاصلخیزی خاک می‌تواند کمک به افزایش باروری زمین و همچنین حفظ مواد آلی و عناصر غذای خاک، کند. در همین راستا آزمایشی با مقادیر مختلف کود (60 کیلوگرم نیتروژن+100کیلوگرم فسفر، 300 کیلوگرم کود آلی بیوارگانیک، 3 کیلوگرم کود زیستی بیومیک، 30 کیلوگرم نیتروژن+50 کیلوگرم فسفر+150 کیلوگرم کود آلی بیوارگانیک، 30 کیلوگرم نیتروژن+50 کیلوگرم فسفر+3 کیلوگرم کود زیستی بیومیک) به عنوان عامل اصلی و سیستم‌های کاشت (کنجد، لوبیا چشم بلبلی، 50:50 کنجد-لوبیاچشم بلبلی، 25:75 کنجد-لوبیا چشم بلبلی، 75:25 کنجد-لوبیا چشم بلبلی) به عنوان عامل فرعی به منظور بررسی اثر سیستم‌های کودی بر قابلیت تولید کشت مخلوط و تک‌کشتی، انجام شد. کشت مخلوط 50:50 کنجد-لوبیا چشم بلبلی در مقایسه با تک کشتی‌ها از نظر شاخص‌های نسبت برابری زمین (03/1)، نسبت برابری زمان زمین (04/1) و کارایی استفاده از زمین (155%)، از سودمندی بالاتری برخوردار بودند. در بین سیستم‌های کودی نیز بالاترین مقادیر نسبت برابری زمین (24/1)،  نسبت برابری زمان زمین (25/1) و کارایی استفاده از زمین (186%) متعلق به سیستم کودی 30 کیلوگرم نیتروژن+50 کیلوگرم فسفر+150 کیلوگرم کود آلی بیوارگانیک بود. به طور کلی نتایج نشان داد که کاربرد 30 کیلوگرم نیتروژن+50 کیلوگرم فسفر+150 کیلوگرم کود آلی بیوارگانیک و سیستم مخلوط 50:50 کنجد و لوبیا چشم بلبلی می‌تواند رویکردی مؤثر در افزایش بهره‌وری در راستای کشاورزی پایدار از طریق بهره‌گیری از پتانسیل بیولوژیکی برای استفاده نیتروژن و فسفر و دیگر منابع، باشد.

Keywords [Persian]

  • واژه های کلیدی: بهره‌وری کود
  • کشت مخلوط
  • کنجد
  • لوبیا چشم بلبلی
Ahmad, M., Zahir, Z.A., Asghar, H.N., &  Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology, 62, 1321-1330.
Akhani, A., Darzi, M.T., &  Haj Seyed Hadi, M.R. (2012). Effects of Biofertilizer and plant density on yield components and seed yield of coriander (Coriandrum Sativum). International Journal of Agriculture and Crop Sciences, 4(16), 1205-1211.
Aminifar, J., Mohsenabadi, G.R., Beigluei, M.H., & Samizadeh, H. (2013). Effect of deficit irrigation on yield, yield components and water productivity of soybean T.215 cultivar. Journal of Irrigation and Water Engineering. 3(11), 24-34. (In Persian)
Andrews, R.W. (1979). Intercropping, Its importance and research need I. Competition and yield advantages. Field Crops Abstract, 32, 1−10.
Antolín, M.C., Muro, I., & Sánchez Díaz, M. (2010). Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Journal of Environmental and Experimental Botany, 68, 75–82.
Berner, A., Hildermann, I., Fließbach, A., Pfiffner, L., Niggli, U., & Mäder, P. (2008). Crop yield and soil fertility response to reduced tillage under organic management. Soil & Tillage Research, 101, 89–96.
Bill, U. (2001). Manure and soil organic matter. Pennsylvania Stat Field Crop News, 01,11.
Blair, N., Faulkner, R.D., Till, A.R., Korschens, M., & Schulz, E. (2006). Long-term management impacts on soil C, N and physical fertility: Part II: Bad Lauchstadt static and extreme FYM experiments. Soil & Tillage Research, 91, 39–47.
Craufard, P.Q. (2000). Effect of plant density on the yield of sorghum-cowpea and pearl millet-cowpea intercrops in northern Nigeria. Experimental Agriculture, 36(3), 379−395.
De Kroon, H. (2007). Ecology: how do roots interact? Science, 318, 1562–1563.
Efthimiadou, A., Bilalis, D., Karkannis, A., Froud williams, B., & Eleftherochorinos, I. (2009). Effects of cultural system (organic and conventional) on growth, photosynthesis and yield components of sweetcorn (Zea mays L.) under semi-arid environment. Notulae Botanicae Horticultural Agrobotanici Cluj-Napoca , 37,104–111.
Ehlers, L.D., & Hall, A.E. (1997). Cowpea (Vigna unguiculata L. Walp.). Field Crops Research, 53(1-3), 187-204.
El Ghadban, E.A.E., Shalan, M.N., & Abdel Latif, T.A.T. (2006). Influence of biofertilizers on growth, volatile oil yieldand constituents of fennel (Foeniculum vulgare Mill.). Egyptian Journal of Agricultural Research, 84(3), 977-992.
Fridley, J.D. (2001). The influence of species diversity on ecosystem productivity: how,where, and why? Oikos, 93, 514–526.
Geno, L., & Geno, B. (2001). Polyculture Production - Principles, Benefits and Risks of Multiple Cropping Land Management Systems for Australia. A report for the rural industries research and development corporation. CIRDC Publication No 01/34.
Ghosh, P.K., Ajay, K.K., Bandyopadhyay, M.C., Manna, K.G., Mandal, A.K., & Hati, K.M. (2004). Comparative effectiveness of cattle manure, poultry manure, phospho- compost and fertilizer-NPK on three cropping system in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content andenzymeactivity. Bioresource Technology, 95, 85–93.
Ghosh, P.K., Manna, M.C., Bandyopadhyay, K.K., Ajay, A.K., Tripathi, R.H., Wanjari, K.M., Hati, A.K., Misra, C.L., & Acharya Subba Rao, A. (2006). Interspecific interaction and nutrient use in soybean/sorghum intercropping system. Agronomy journal, 98, 1097–1108.
HauggaardNieson, H., Ambus, P., & Jensen, E.S. (2001). Temporal and spatial distribution of roots and competition for nitrogen in pea-barley intercrops. A field studies employing 23P techniques. Plant and Soil, 236, 63−74.
HauggaardNielsen, H., & Jensen, E.S. (2005). Facilitative root interactions in intercrops. Plant and Soil, 274, 237–250.
HauggaardNielsen, H., Gooding, M., Ambus, P., Corre Hellou, G., Crozat, Y., Dahlmann, C., Dibet, A., von Fragstein, P., Pristeri, A., Monti, M., & Jensen, E.S. (2009). Pea–barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems. Field Crop Research, 113, 64–71.
Isvand, H.R., Dousti, A., Majnoun Hossaini, N., & Pourbabaee, A.A. (2014). Effects of PGPR bacteria and seed ageing on improving common bean (Phaseolus vulgaris L.) yield and yield components. Iranian Journal of Field Crop Science, 45(2), 277-285.
Jannoura, R., Joergensen, R.G., & Bruns, C. (2014). Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and intercropped peas and oats under organic farming conditions. European Journal of Agronomy, 52, 259-270.
Jensen, E.S. (1996). Grain yield, symbiotic N2-fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant and Soil, 182, 25–38.
Jolliffe, P.A., & Wanjau, F.M. (1999). Competition and productivity in crop mixtures: some properties of productive intercrops. Journal of Agricultural Science, 132, 425–435.
Lambers, H., Chapin, F.S., & Pons, T.L. (1998). Plant Physiological Ecology. Springer-Verlag, New York.
Lauk, R., & Lauk, E. (2008). Pea–oat intercrops are superior to pea–wheat and pea– barley intercrops. Acta Agriculturae Scandinavica, Section B, 58, 139–144.
Li, L., Yang, S.C., Li, X.L., Zhang, F.S., & Christie, P. (1999). Interspecific complementary and competitive interactions between intercropped maize and faba bean. Plant and Soil, 212, 105–114.
Li, L., Sun, J.H., Zhang, F.S., Guo, T.W., Bao, X.G., Smith, F.A., & Smith, S.E. (2006). Root distribution and interactions between intercropped species. Oecologia, 147, 280–290.
Li, L., Sun, J.H., Zhang, F.S., Li, X.L., Yang, S.C., & Rengel, Z. (2006). Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients. Field Crop Research, 71, 123−137.
Li, L., Li, S.M., Sun, J.H., Zhou, L.L., Bao, X.G., Zhang, H.G., & Zhang, F.S. (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences. U.S.A. 104: 11192–11196.
Liu, X., Herbert, S.J., Jin, J., Zhang, Q., & Wang, G. (2004). Responses of photosynthetic rates and yield/quality of main crops to irrigation and manure application in the black soil area of Northeast China. Plant and Soil, 261, 55–60.
Lithourgidis, A.S., Vasilakoglou, I.B., Dhima, K.V., Dordas, C.A., & Yiakoulaki, M.D. (2006). Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crop Research, 99, 106−113.
Mahfouz, S.A., & Sharaf Eldin, M.A. (2007). Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill). International Agrophysics, 21(4), 361-366.
Marshal, B., & Willy, R.W. (1983), Radiation interception and growth in an intercrop of Pearl millet/groundnut. Field crops Research, 7, 141−160.
Mead, R., & Willey, R.W. (1980). The concept of land equivalent ratio and advantages in yield from intercropping. Experimental Agriculture, 16, 217–218.
Najeeb, U., Mirza, M.Y., Jilani, G., Mubashir, A.K., & Zhou, W.J. (2012). Sesame. In: Gupta, S.K. (Ed),  Technological Innovations in Major World Oil Crops, Volume 1:Breeding. © Springer Science+Business Media, LLC 2012.
Oue´draogo, E., Mando, A., Brussaard, L., & Stroosnijder, L. (2007). Tillage and fertility management effects on soil organic matter and sorghum yield in semi-arid West Africa. Soil &Tillage Research, 94, 64–74.
Peng, S.B., Krieg, D.R., & Girma, F.S. (1991). Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum. Photosynthesis Research, 28, 1–7.
Pouramir, F., Kucheki, A., Nasiri Mahallati, M., & Ghorbani, R. (2010). Assessment of sesame and chickpea yield and yield components in intercropping replacement series. Iranian Journal od Field Crops Research, 8(5), 757-767. (In Persian)
Powlson, D.S., Bhogal, A., Chambers, B.J., Coleman, K., & Macdonald, A.J. (2012). The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: A case study. Agriculture, Ecosystems & Environment, 146, 23–33.
Rose, T.J., Rengel, Z., Ma, Q., & Bowden, J.W. (2007). Differential accumulation patternsof phosphorus and potassium by canola cuffivars compared to wheat. Journal of Plant Nutrition and Soil Science, 170, 404–411.
Sangakkara, U.R. (1993). Effect of EM on Nitrogen and Potassium levels in the Rhizosphere of Bush Bean. Third International Conference on Kyusei Nature Farming 1993. Sanat Barbara, California, USA. 5-7 October 1993.
Takim, F.O. (2012). Advantages of Maize-Cowpea intercropping over sole cropping through competition indices. Journal of Agriculture and Biodiversity Research, 1(4), 53−59.
Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.
Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Velázquez, E., Rodríguez Barrueco, C., Cervantes, E., Chamber, M., & Igual, J.M. (2006). Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant and Soil, 287, 43-50.
Vandermeer, J.H. (1989). The ecology of intercropping. Cambridge University Press, Cambridge.
Vandermeer, J.H. (1995). The ecological basis of alternative agriculture. Annual Review of Ecology, Evolution, and Systematics, 26, 201–224.
Verma, S., & Sharma, P.K. (2007). Effect of long-term manuring and fertilizers on carbon pools, soil structure, and sustainability under different cropping systems in wet-temperate zone of northwest Himalayas. Biology and Fertility of Soils, 44, 235–240.
Weiss, E.A. (2000). Oilseed crops, 2nd edn. Oxford, Blackwell Science, pp 131–164.
Xia, H.Y., Wang, Z.G., Zhao, J.H., Sun, J.H., Bao, X.G., Christie, P., Zhang, F.S., & Li, L. (2013). Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Research, 154, 53-64.
Yaseen, M., Singh, M., & Ram, D. (2014). Growth, yield and economics of vetiver (Vetiveria zizanioides L. Nash) under intercropping system. Industrial Crops and Products, 61, 417-421.
Zhang, F., & Li, L. (2003). Using competitive and facilitative interactions in intercropping systems enhance crop productivity and nutrient-use efficiency. Plant and Soil, 248, 305–312.