گازهای گلخانه ای و آلاینده های آب و خاک منتشر شده از دامداری در شهرستان ارزوئیه استان کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش اقتصاد کشاورزی دانشگاه سیستان و بلوچستان، زاهدان، ج. ا. ایران

چکیده

انتشار گازهای گلخانه ای (GHG) یک بحران زیست محیطی مهم است که به یک نگرانی بزرگ در بسیاری از کشورها تبدیل شده است. یکی از عوامل اصلی انتشار گازهای گلخانه ای، دامپروری و تولید گوشت است. هدف از این مطالعه برآورد انتشار گازهای گلخانه ­ای و همچنین انتشار آلاینده­ های آب و خاک ناشی از این فعالیت ها در شهرستان ارزوئیه با استفاده از مدل بهینه سازی خطی است. نتایج نشان داد که کود جامد (مدفوع) از هر دام گاو 392/82 کیلوگرم در سال آلاینده خاک منتشر می کند که اکسیژن شیمیایی بیشترین انتشار را دارد. در مقابل، آلاینده­ های منتشر شده از کود جامد گوسفند و بز به ترتیب 11/06 و 9/93 کیلوگرم است که نیتروژن کل عامل اصلی آن است. همچنین، از کود مایع (ادرار) گاو، گوسفند و بز به ترتیب 99/55، 8/38 و 7/56 کیلوگرم آلاینده وارد آب و خاک می ­شود. پتاسیم (کالیوم) آلاینده اولیه منتشر شده از کود مایع هر سه دام بود. علاوه بر این، انتشار متان از مدیریت کود و تخمیر روده­ای برای هر سه دام در منطقه 106×1/56 کیلوگرم است. دام بز به دلیل جمعیت بالا، ۷۳۸۶۶۹ کیلوگرم متان منتشر می ­کند. انتشار اکسید نیتروژن (N2O) ناشی از پرورش فعالیت دامداری در این منطقه 83843 کیلوگرم برآورد شد. علاوه بر این، هزینه کربن تحمیل شده به منطقه بررسی شد. این تحقیق می ­تواند برای تصمیم ­گیران و سیاست­ گذاران زیست­ محیطی ارزشمند باشد.

کلیدواژه‌ها

موضوعات


Agriculture Jahad Department of Kerman Province (AJDKP). (2022). Annual reports. Retrieved from: http://www.agrijahad-kr.ir.
Archer, D., Kite, E., & Lusk, G. (2020). The ultimate cost of carbon. Climatic Change, 162, 2069–2086. https://doi.org/10.1007/s10584-020-02785-4
Aguirre-Villegas, H. A., & Larson, R A. (2017). Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. Journal of Cleaner Production, 143, 169–179. https://doi.org/10.1016/j.jclepro.2016.12.133
Cui, Z., Dou, Z., Chen, X., Ju, X., & Zhang, F. (2014). Managing agricultural nutrients for food security in China: Past, present, and future. Soil Fertility & Crop Nutrition, 106(1), 191–198. https://doi.org/10.2134/agronj2013.0381
 
Crosson, P., Shalloob, L., O’Brienb, D., Laniganc, G. L., Foleyd, P. A., Bolandd, T. M., & Kennya, D. A. (2011). A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology, 166, 29– 45. https://doi.org/10.1016/j.anifeedsci.2011.04.001
Debnath, B., Bari, A. B. M., de Jesus Pacheco, D. A., & Karmaker, C. L. (2023). An integrated Best–Worst Method and interpretive structural modeling approach for assessing the barriers to circular economy implementation. Decision Analytics Journal, 7, 100250. https://doi.org/10.1016/j.dajour.2023.100250
Environmental Protection Agency (EPA). (2023). Report on the social cost of greenhouse gases: Estimates incorporating recent scientific advances. Retrieved from:
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., & Dijkman, J. (2013). Hacer frente al cambio climático a través de la ganadería—Evaluación global de las emisionesy las oportunidades de mitigación. Roma: FAO. Retrieved from:
http://www.fao.org/3/i3437s/i3437s.pdf.
Hou, Y., Velthof, G. O., Lesschen, J. P., Staritsky, I. G., & Oenema, O. (2017). Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: Effects of manure treatment technologies. Environmental Science & Technology, 51(1), 375–383. https://doi.org/10.1021/acs.est.6b04524
Hooda, P. S., Edwardsb, A.C., Anderson, H. A., & Miller, A. (2000). A review of water quality concerns in livestock farming Areas. The Science of the Total Environment, 250, 143-167.
Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. (2021). Technical support document: Social cost of carbon, methane, and nitrous oxide interim estimates under executive order 13990. Retrieved from:
https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf
Intergovernmental Panel on Climate Change (IPCC). (2013). “Summary for policymakers,” in climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, eds T.F., Stocker et al., (New York, NY: Cambridge University Press). Available online
at:https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf. (accessed January 11, 2021).
Intergovernmental Panel on Climate Change (IPCC). (2006). IPCC guideline for national greenhouse inventories. Intergovernmental France, Paris: Panel on Climate Change IPCC. (IPCC/OECD/IEA). Retrieved from:https://www.ipccnggip.iges.or.jp/public/2006gl/index.html.
Ji, E. S., & Park, K. H. (2012). Methane and nitrous oxide emissions from livestock agriculture in 16 local administrative districts of Korea. Asian-Australasian Journal of Animal Sciences, 25(12), 1768–1774. https://doi.org/10.5713/ajas.2012.12418
Johnson, J., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107-124. https://doi.org/10.1016/j.envpol.2007.06.030
Khabarov, N., Smirnov, A., & Obersteiner, M. (2022). Social cost of carbon: A revisit from a systems analysis perspective. Frontiers in Environmental Science, 10, 1-8. https://doi.org/10.3389/fenvs.2022.923631
Li, Y., Wang, M., Chen, X., Cui, S., Hofstra, N., Carolien, K., Ma, L., Xu, W., Zhang, F., & Strokal, M. (2022). Multi-pollutant assessment of river pollution from livestock production worldwide. Water Research, 209, 1-12. https://doi.org/10.1016/j.watres.2021.117906
Li, M., Fua, O., Singhc, V. P., Liua, D., & Lie, J. (2020). Optimization of sustainable bioenergy production considering energy-foodwater-land nexus and livestock manure under uncertainty. Agricultural Systems, 184, 1-18. https://doi.org/10.1016/j.agsy.2020.102900
Mousapour, Sh., Hashamitebar, M., Safdari, M., & Sardar-Shahraki, A. (2023). Modeling the nexus of water, food and energy in the production of sustainable biological energy from agricultural wastes in county of Urzouyeih. (Doctoral dissertation, University of Sistan and Baluchistan, Zahedan, Iran).
Panchasara, H., Hoque Samrat, N., & Islam, N. (2021). Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—a review. Agriculture, 11(2), 1-16. https://doi.org/10.3390/agriculture11020085
Philippe, F. X., & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 199, 10-25. https://doi.org/10.1016/j.agee.2014.08.015
Petersen, S. O., Blanchard, M., Chadwick, D., Del Prado, A., Edouard, N., Mosquera, J., & Sommer, S. G. (2013). Manure management for greenhouse gas mitigation. Animal, 7, 266-282.
Rennert, K., Errickson, F., Prest, B. C., Rennels, L., Newell, R. G., Pizer, W., Kingdon, C., Wingenroth, J., Cooke, R., Parthum, B., Smith, D., Cromar, K., Diaz, D., Moore, F. C., Müller, U. K., Plevin, R. J., Raftery, A. E., Ševčíková, H., Sheets, H., Stock, J. H., Tan, T., Watson, M., Wong, T. E., & Anthoff, D. (2022). Comprehensive evidence implies a higher social cost of CO2. Nature, 610(7933), 687-692. https://doi.org/10.1038/s41586-022-05224-9.
Rivera, J. E., & Chará, J. (2021). CH4 and N2O emissions from cattle excreta: A review of main drivers and mitigation strategies in grazing systems. Frontiers in Sustainable Food Systems, 5, 1-17. https://doi.org/10.3389/fsufs.2021.657936
Su, M., Jiang, R., & Li, R. (2017). Investigating low-carbon agriculture: Case study of China’s Henan Province. Sustainability, 9, 1-14. https://doi.org/10.3390/su9122295
Sakadevan, K., & Nguyen, M. L. (2017). Livestock production and its Impact on nutrient pollution and greenhouse gas emissions. Advances in Agronomy, 141, 147–184. https://doi.org/10.1016/bs.agron.2016.10.002
Steinfeld, H., & Wassenaar, T. (2007). The role of livestock production on carbon and nitrogen cycles. Annual Review of Environment and Resources, 32, 271–294. https://doi.org/10.1146/annurev.energy.32.041806.143508
Tu, Y., Zhao, Y., Liu, L., & Nie, L. (2022). Travel route planning of core scenic spots based on best-worst method and genetic algorithm: A case study. Management System Engineering, 1(4), 1-14. https://doi.org/10.1007/s44176-022-00004-1
Tao, T., Liu, J., Guan, X., Chen, H., Ren, X., Wang, S., & Ji, M. (2020). Estimation of potential agricultural non-point source pollution for Baiyangdian Basin, China, under different environment protection policies. PLoS ONE, 15(9), 1-15. https://doi.org/10.1371/journal.pone.0239006
Xiong, C., Yang, D., & Huo, J. (2016a). Spatial-temporal characteristics and LMDI-BasedImpact factor decomposition of agricultural carbon emissions in hotan prefecture. China. Sustainability, 8(3), 1-14. https://doi.org/10.3390/su8030262
Xiong, C., Yang, D., Xia, F., & Huo, J. (2016b). Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Scientific Reports, 6, 36912. https://doi.org/10.1038/srep36912
Yazdani, M., Ebadi Torkayesh, A., Chatterjee, P., Fallahpour, A., Montero-Simo, M. J., Araque-Padilla, R. A., & Wong, K. Y. (2022). A fuzzy group decision-making model to measure resiliency in a food supply chain: A case study in Spain. Socio-Economic Planning Sciences, 82, 101257. https://doi.org/10.1016/j.seps.2022.101257
Yu, L., Li, Y. P., Huang, G. H., Fan, Y. R., & Nie, S. (2018). A copula-based flexible-stochastic programming method for planning regional energy system under multiple uncertainties: A case study of the urban agglomeration of Beijing and Tianjin. Applied Energy, 210, 60-74. https://doi.org/10.1016/j.apenergy.2017.10.099
Yun, T., Jun-biao, Z., & Ya-ya, H. (2014). Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. Journal of Integrative Agriculture, 13(6), 1393-1403. https://doi.org/10.1016/S2095-3119(13)60624-3
Zhang, L., Tan, X., Chen, H., Liu, Y., & Cui, Z. (2022). Effects of agriculture and animal husbandry on heavy metal contamination in the aquatic environment and human health in Huangshui River Basin. Water, 14(4), 549. https://doi.org/10.3390/w14040549
World Health Organization (WHO). (2019). Drinking-water. Retrieved from: https://www.who.int/news-room/fact /detail/drinking-water.