Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24 (1), 1-15. https://doi.org/10.1104/pp.24.1.1
Åström, B., & Gerhardson, B. (1988). Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant and Soil, 109, 263-269. https://doi.org/10.1007/BF02202093
Bashan, Y., Bustillos, J. J., Leyva, L., Hernandez, J. P., & Bacilio, M. (2006). Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils, 42, 279-285. https://doi.org/10.1007/s00374-005-0025-x
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Boleta, E. H., Shintate Galindo, F., Jalal, A., Santini, J. M., Rodrigues, W., Lima, B. H., Arf, O., Silva, M. Z., Buzetti, S., & Teixeira Filho, M. C. (2020). Inoculation with growth-promoting bacteria Azospirillum brasilense and its effects on productivity and nutritional accumulation of wheat cultivars. Frontiers in Sustainable Food Systems, 4, 607262. https://doi.org/10.3389/fsufs.2020.607262
Coelho, S. P., Galvão, J. C., Giehl, J., de Jesus, É. V., Mendonça, B. F., Campos, S. D., Brito, L. F., dos Santos, T. R., Dourado, E. D., Kasuya, M. C., Silva, M. D., & Cecon, P. R. (2020). Azospirillum brasilense increases corn growth and yield in conventional low input cropping systems. Renewable Agriculture and Food Systems, 36(3), 225-233. https://doi.org/10.1017/S1742170520000241
Cohen, A. C., Bottini, R., Pontin, M., Berli, F. J., Moreno, D., Boccanlandro, H., Travaglia, C. N., & Piccoli, P. N. (2015). Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum, 153, 79-90. https://doi.org/10.1111/ppl.12221.
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82, 273-281. https://doi.org/10.1139/b03-119
Creus, C. M., Sueldo, R. J., and Barassi, C. A. (1998). Water relations in Azospirillum-inoculated wheat seedlings under osmotic stress. Canadian Journal of Research, 76, 238-244. https://doi.org/10.1139/b97-178
Filho, M. C., Shintate Galindo, F., Buzetti, S., & Santini, J. M. (2017). Inoculation with Azospirillum brasilense improves nutrition and increases wheat yield in association with nitrogen fertilization. Front in Sustain Food Systems, 4, 6072. https://doi.org/10.5772/67638
Fukami, J., Nogueira, M. A., Araujo, R. S., & Hungria, M. (2016). Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 6, 3. https://doi.org/10.1186/s13568-015-0171-y
Galindo, F. S., Rodrigues, W. L., Fernandes, G. C., Boleta, E. H., Jalal, A., Rosa, P. A., Buzetti, S., Lavres, J., & Teixeira Filho, M. C. (2022). Enhancing agronomic efficiency and maize grain yield with Azospirillum brasilense inoculation under Brazilian savannah conditions. European Journal of Agronomy, 134, 126471. https://doi.org/10.1016/j.eja.2022.126471
Hungria, M., Campo, R. J., Souza, E. M., & Pedrosa, F. D. (2010). Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331, 413-425. https://doi.org/10.1007/s11104-009-0262-0
Isawa, T., Yasuda, M., Awazaki, H., Minamisawa, K., Shinozaki, S., & Nakashita, H. (2010). Azospirillum sp. strain B510 enhances rice growth and yield. Microbes and Environments, 25(1), 58-61. https://doi.org/10.1264/jsme2.me09174
Jackson M. L. (1969). Soil chemical analysis-advanced course. Madison: Prentice Hall Inc.
Jafariyan, T., & Zarea, M. J. (2016). Hydrogen peroxide affects plant growth promoting effects of Azospirillum. Journal of Crop Science and. Biotechnology, 19, 167-175. https://doi.org/10.1007/s12892-015-0127-4
Karimi, N., Goltapeh, E. M., Amini, J., Mehnaz, S., & Zarea, M. J. (2020). Effect of Azospirillum zeae and seed priming with zinc, manganese and auxin on growth and yield parameters of wheat, under dryland farming. Agricultural. Research, 1, 44-55. https://doi.org/10.1007/s40003-020-00480-5
Karimi, N., Zarea, M. J., & Mehnaz, S. (2018). Endophytic Azospirillum for enhancement of growth and yield of wheat. Environmental Sustainability, 1, 149-158. https://doi.org/10.1007/s42398-018-0014-2
Kasim, W. A., Osman, M. E., Omar, M. N., & Salama, S. E. (2021). Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bulletin of the National. Research Centre, 45(1), 95. https://doi.org/10.1186/s42269-021-00546-6
Kazi, N. A., Deaker, R., Wilson, N. L., Muhammad, K., & Trethowan, R. (2016). The response of wheat genotypes to inoculation with Azospirillum brasilense in the field. Field Crops Research, 196, 368-378. https://doi.org/10.1016/j.fcr.2016.07.012
Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
Lutts, S., Kint, J., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oriza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398. https://doi.org/10.1006/anbo.1996.0134
Millet, E., Avivi, Y., & Feldman, M. (1984). Yield response of various wheat genotypes to inoculation with Azospirillum brasilense. Plant and Soil, 80, 261-266.
Ministry of Agricultural Jihad. (2022). Agricultural statistics of 1400-volume 1: Agricultural crops.
Moradi, I., & Zarea, M. J. (2021). Grain response of three wheat cultivars to Azospirillum Inoculation in two different sowing dates. Agricultural Science and Sustainable Production, 31(1), 259-273. (In Persian). https://doi.org/10.22034/saps.2021.12813
Naderifar, M., & Daneshian, J. (2012). Effect of seed inoculation with Azotobacter and Azospirillum and different nitrogen levels on yield and yield components of canola (Brassica napus L.). Iranian Journal of Plant Physiology, 3, 619-626.
Pedrosa, F. D., Oliveira, A. L., Guimarães, V. F., Etto, R. M., Souza, E. M., Furmam, F. D., Gonçalves, D. R., Santos, O. J., Gonçalves, L. S., Battistus, A. G., & Galvão, C. W. (2020). The ammonium excreting Azospirillum brasilense strain HM053: A new alternative inoculant for maize. Plant and Soil, 451(2), 45-56. https://doi.org/10.1007/s11104-019-04124-8
Pereira, L. C., Bertuzzi Pereira, C., Correia, L. V., Matera, T. C., Santos, R. F. D., Carvalho, C., Osipi, E. A. F., & Braccini, A. L. (2020). Corn responsiveness to Azospirillum: Accessing the effect of root exudates on the bacterial growth and its ability to fix nitrogen. Plants (Basel), 9(7), 923. https://doi.ORG/10.3390/plants9070923
Ritchie, S. W., Nguyen, H. T., & Holaday, A. S. (1990). Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
Rosa, P. A., Mortinho, E. S., Jalal, A., Galindo, F. S., Buzetti, S., Fernandes, G. C., Barco Neto, M., Pavinato, P. S., & Teixeira Filho, M. C. (2020). Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in sugarcane. Frontiers in Environmental Science, 8, 1-32. https://doi.org/10.3389/fenvs.2020.00032
Salem, G. S., Stromberger, M. E., Byrne, P. F., Manter, D. K., El-Feki, W. M., & Weir, T. L. (2018). Genotype-specific response of winter wheat (Triticum aestivum L.) to irrigation and inoculation with ACC deaminase bacteria. Rhizosphere, 8, 1-7. https://doi.org/10.1016/j.rhisph.2018.08.001
Sarig, S., Blum, A., & Okon, Y. (1988). Improvement of the water status and yield of field-grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. The Journal of Agricultural Science, 110 (2), 271-277. https://doi.org/10.1017/S0021859600081296
Shakir, M. A., Asghari, B., & Arshad, M. (2012). Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil and Environment, 31(1), 108-112.
Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M. I., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. https://doi:10.1016/j.apsoil.2017.09.030
Tarrand, J. J., Krieg, N. R., & Döbereiner, J. (1978). A taxonomic study of the Spirillum lipoferum group, with the descriptions of a new genus, Azospirillum gen. nov. and two species Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology, 24(8), 967-980. https://doi.org/10.1139/m78-160
Ulfat, A., Mehmood, A., Ahmad, K. S., & Ul-Allah, S. (2021). Elevated carbon dioxide offers promise for wheat adaptation to heat stress by adjusting carbohydrate metabolism. Physiology and Molecular Biology of Plants, 27(10), 2345-2355. https://doi.org/10.1007/s12298-021-01080-5
Valente, J., Gerin, F., Le Gouis, J., Moënne-Loccoz, Y., & Prigent-Combaret, C. (2020). Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant, Cell & Environment, 43(1), 246-260. https://doi.org/10.1111/pce.13652
Veresoglou, S. D., & Menexes, G. (2010). Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: A meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant and Soil, 337, 469-480. https://doi.org/10.1007/s11104-010-0543-7
Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants physio-biochemical and phyto-hormonal responses to alleviate the effects of stress: A Comprehensive Review. Plants (Basel), 11(13), 1620. https://doi.org/10.3390/plants11131620
Yaghoubian, I., Modarres-Sanavy, S. A. M., & Smith, D. L. (2022). Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content. Plant Physiology and Biochemistry, 15, 191, 55-66. https://doi:10.1016/j.plaphy.2022.09.013
Zaheer, M. S., Ali, H. H., Iqbal, M. A., Erinle, K. O., Javed, T., Iqbal, J., Hashmi, M. L. U., Mumtaz, M. Z., Salama, E. A. A., Kalaji, H. M., Wróbel, J., & Dessoky, E. S. (2022). Cytokinin production by Azospirillum brasilense contributes to increase in growth, yield, antioxidant, and physiological systems of wheat (Triticum aestivum L.). Frontiers in Microbiology, 13, 886041. https://doi.org/10.3389/fmicb.2022.886041
Zaheer, M. S., Raza, M. A., Saleem, M. F., Erinle, K. O., Iqbal, R., & Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis, 50, 2521-2533. https://doi.org/10.1080/00103624.2019.1667376
Zaheer, M. S., Raza, M. A., Saleem, M. F., Khan, I., Ahmad, S., Iqbal, R., & Manevski, K. (2019). Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat (Triticum aestivum L.). Archives of Agronomy and Soil Science, 65, 1554-1564. https://doi.org/10.1080/03650340.2019.1566954
Zarea, M. J. (2017). Azospirillum and wheat production. In: Kumar, V., Kumar, M., Sharma, S., Prasad, R. (eds), Probiotics in agroecosystem (pp. 329-348). Singapore: Springer. https://doi.org/10.1007/978-981-10-4059-7_17
Zarea, M. J. (2024). Effect of foliar application of Azospirillum brasilense and zinc sulfate on the grain-filling process of rainfed wheat. Iran Agricultural Research, 43(2), 1-9. https://doi.org/10.22099/iar.2024.50169.1595
Zarea, M. J., Hajinia, S., Karimi, N., Mohammadi Goltapeh, E., Rejali, F., & Varma, A. (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and. Biochemistry, 45, 139-146. https://doi.org/10.1016/j.soilbio.2011.11.006
Zarea, M. J. (2019). Applications of Beneficial Microbe in Arid and Semiarid Agroecosystem: IAA-Producing Bacteria. In: Kumar, V., Prasad, R., Kumar, M., Choudhary, D. (Eds), Microbiome in plant health and disease (pp. 105–118). Singapore: Springer. https://doi.org/10.1007/978-981-13-8495-0_5
Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., & Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12 (8), 2127. https://doi.org/10.3390/w12082127