تأثیر مدیریت نیتروژن بر رشد و عملکرد ذرت شیرین و برخی ویژگی های خاک تحت رژیم های متفاوت آبیاری و سامانه های خاک ورزی

نوع مقاله : مقاله کامل

نویسندگان

1 گروه تولید و ژنتیک گیاهی دانشکده کشاورزی دانشگاه شیراز، شیراز، ج.ا. ایران

2 گروه علوم مهندسی خاک دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران

چکیده

عرضه بهینه عناصر غذایی (شیمیایی یا زیستی) همراه با دسترسی به آب و کاربرد سامانه­ های خاک­ورزی مناسب، پیش نیاز تولید بالای ذرت (Zea mays L.) است. به منظور ارزیابی اثرات نیتروژن، رژیم­ های آبیاری و سامانه ­­های خاک ­ورزی بر رشد، عملکرد و راندمان مصرف آب ذرت شیرین (Zea mays L. var sacchrata) و برخی ویژگی­ های خاک، آزمایشی در دو سال زراعی 1395 و 1396 در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه شیراز (منطقه باجگاه) به صورت کرت­ های خرد شده فاکتوریل در قالب طرح بلوک­ های کامل تصادفی با 3 تکرار انجام شد. عامل اصلی شامل خاک­ ورزی در دو سطح (خاک­ ورزی متداول و کم خاک ­ورزی)، منبع نیتروژن در 5 سطح (شاهد، نیتروکسین، 150 کیلوگرم اوره، 150 کیلوگرم اوره + نیتروکسین و 300 کیلوگرم اوره) به­ عنوان عامل نخست، و تنش آبی در دو سطح (75 و 100 درصد نیاز آبی گیاه) به­عنوان عامل دوم در نظر گرفته شد. نتایج دو سال نشان داد که عملکرد کنسروی ذرت شیرین و همچنین راندمان مصرف آب با کاربرد 300 کیلوگرم اوره در هکتار، 75 درصد نیاز آبی و انجام خاک­ ورزی متداول افزایش یافت. بیشترین میزان نیتروژن خاک از برهمکنش سامانه کم خاک­ورزی، کاربرد نیتروکسین + 150 کیلوگرم اوره در هکتار و 75 درصد نیاز آبی در سال نخست، و در آبیاری معمولی در سال دوم بدست آمد. با این حال، بیشترین میزان کربن آلی خاک به سامانه کم خاک­ورزی و کاربرد نیتروکسین + 150 کیلوگرم اوره در هکتار تعلق داشت از این رو، ذرت شیرین تلقیح شده با نیتروکسین به سامانه کم خاک­ورزی با میزان نیتروژن کافی سازگاری خوبی داشت و همراه با رژیم آبیاری تا 75 درصد نیاز آبی گیاه می ­تواند به عنوان روشی بهینه در منطقه به کار رود. علاوه براین کاهش حجم آب نه تنها عملکرد کنسروی را به صورت معنی داری کاهش نداد، بلکه بصورت قابل ملاحظه ای موجب صرفه جویی در مصرف آب در آبیاری­ گردد.

کلیدواژه‌ها

موضوعات


Abdelhafez, A. A., Metwalley, S. M., & Abbas, H. H. (2020). Irrigation: Water resources, types and common problems in Egypt. In Omran, E-S. E, and Negm, A. M. (Eds.), Technological and Modern Irrigation Environment in Egypt: best management Practices & evaluation (pp. 15–34). Springer Cham. doi:10.1007/978-3-030-30375-4
Agami, R. A., Alamri, S. A. M., Abd El-Mageed, T. A., Abousekken, M. S. M., & Hashemb, M. (2018). Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agricultural Water Management, 210, 261–270. http://dx.doi.org/10.1016/j.agwat.2018.08.034.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop plant water requirements, irrigation and drainage. Crop Evapotranspiration: Guidelines for computing crop plant water requirements. Irrigation and drainage. paper 56. FAO, Rome.
Alijani, KH., Bahrani, M. J., & Kazemeini, S. A. (2019). Is it necessary to adjust nitrogen recommendations for tillage and wheat residue management in irrigated sweet corn? Archives of Agronomy and Soil Science, 65 (14), 1-14.
Aydinsakir, K., Erdal, S., Buyuktas, D., Bastug, R., & Toker, R. (2013). The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes. Agricultural Water Management, 128, 65– 71. https://doi.org/10.1016/j.agwat.2013.06.013
Bartlett, M.S. (1937). Properties of sufficiency and statistical tests. Proceeding of the Royal Society of London. Series A. Mathematical, Physical, and Engineering Sciences, 160, 268–282.
Benjamin, J. G., Halvorson, A. D., Nielsen, D. C., & Mikha, M. M. (2010). Crop management effects on crop residue production and changes in soil organic carbon in the central great plains. Agronomy Journal, 102, 990–997. doi:10.2134/agronj2009.0483
Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: A review. Agronomy for Sustainable Development, 35, 401-442. doi:10.1007/s13593-015-0283-4
Bremner, J. M. (1996). Nitrogen-Total. In: Sparks D. L., Page A. L., Helmke P. A., Loeppert R. H., Soltanpour P. N., Tabatabai M. A., Johnston C. T., Sumner M. E. (ed), Methods of soil analysis: part 3-chemical methods. SSSA Book Ser. 5.3. (pp. 1085-1121). Madison (WI): Soil Science Society America.
Buráňová, S., Černý, J., Kulhánek, M., Vasák, F., & Balik, J. (2015). Influenced of mineral and organic fertilizers on yield and nitrogen efficiency of winter wheat. International Journal of Plant Production, 9 (2), 257-272.
Dianatmanesh, M., Kazemeini, S. A., Bahrani, M. J., Shakeri, E., Alinia, M., Amjad, S. F., Mansoora, N., Poczai, P., Lalarukh, I., Abbas, M. H. H., Abdelhafez, A. A., & Hamed, M. H. (2022). Yield and yield components of common bean as influenced by wheat residue and nitrogen rates under water deficit conditions. Environmental Technology and Innovation, 28, 1-13. https://doi.org/10.1016/j.eti.2022.102549
El-Hendawy, S. E., & Schmidhalter, U. (2010). Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil. Agricultural Water Management, 97, 439–448. doi:10.1016/j.agwat.2009.11.002
Ertek, A., & Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. Agricultural Water Management, 129, 138–144. doi:10.1016/j.agwat.2013.07.012
Ertek, A., Şensoy, S., Gedik, I., & Küçükyumuk, C. (2006). Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agricultural Water Management, 81, 159–172. doi:10.1016/j.agwat.2005.03.008
Gou, W., Tian, L., Ruan, Z., Zheng, P., Chen, F., Zhang, L., Cui, Z., Zheng, P., Li, Z., & Gao, M. (2015). Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pakistan Journal of Botany, 47, 581–586.
Haghverdi, A., Dean, Y. C., Reichertd, D. L., & Irmak, S. (2017). Impact of irrigation, surface residue cover and plant population on sugar beet growth and yield, irrigation water use efficiency and soil water dynamics. Agricultural Water Management, 180, 1–12. doi:10.1016/j.agwat.2016.10.018
Jat, H. S., Datta, A., Sharma, P. C., Kumar, V., Yadav, A. K., Choudhary, M., Choudhary, V., Gathala, M. K., Sharma, D. K., & Jat, M. L. (2017). Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 64, 531–545. doi:10.1080/ 03650340.2017.1359415.
Karam, F., Breidy, J., Stephan, C., & Rouphael, J. (2003). Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon. Agricultural Water Management, 63, 125–137. doi:10.1016/S0378-3774(03)00179-3
Khan, Q. A., & McVay, K. A. (2014). Impact of tillage, irrigation method, and nitrogen rate on sugar beet productivity. Agronomy Journal, 106, 1717–1721. doi:10.2134/agronj14.0081.
Khaliqi, M., & Naghavi, M. R. (2016). Study of the effect of drought stress on protein patterns and morpho-physiological traits in plants. Journal of Biosafety, 9 (2), 22-33.
Kemal, Y. O., Abera. M. (2015). Contribution of integrated nutrient management practice for sustainable crop productivity, nutrient uptake and soil nutrient status in maize based cropping systems. Journal of Nutrition, 2 (1), 1-10. doi:10.18488/journal.87/2015.2.1/87.1.1.10
Kresović, B., Tapanarova, A., Tomić, Z., Životić, L., Vujović, D., Sredojević, Z., & Gajić, B. (2016). Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agricultural Water Management, 169, 34–43. doi.org/10.1016/j.agwat.2016.01.023
Mansouri-Far, C., Sanavy, S. A. M. M., & Saberali, S. F. (2010). Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural Water Management, 97, 12–22. doi:10.1016/j.agwat.2009.08.003
Najafi, S., Nazari nasi, H., Tunturk, R., Tunturk, M., Sayeed, R., Amirnia, R. (2021). Biofertilizer application enhances drought stress tolerance and alters the antioxidant enzymes in medicinal pumpkin (Cucurbita pepo convar. pepo var. Styriaca). Horticulturea, 7(12), 588-596.
10.3390/horticulturae7120588. http://www.mdpi.com/journal/horticultureae.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In: Madison, W. (Ed.), Methods of soil analysis part 3Chemical Methods, 3th ed, (pp. 539–580). New York, USA: American Society of Agronomy.
Nezhadahmadi, A., Prodhan, Z. H., & Faruq, G. (2013). Drought tolerance in wheat: A review. Scientific World Journal, 2013, 1-12. https://doi.org/10.1155/2013/610721.
Nouraki, F., Alavi-Fazel, M. Naderi, A. Panahpor, E., & Lack, Sh. (2016). Integrated application of biological and chemical fertilizers in types of maize hybrids (Zea mays L.) for sustainable agriculture in Iran. Academia Journal of Agricultural Research, 4(2), 63-66.
Paredes, P., de Melo-Abreu, J. P., Alves, I., & Pereira, L. S. (2014). Assessing the performance of the FAO Aqua Crop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management, 144, 81–97. doi:10.1016/j.agwat.2014.06.002
Pantoja, J. L., Woli, K. P., Sawyer, J. E., Barker, D. W., & Al-Kaisi, M. (2015). Stover harvest and tillage system effects on corn response to fertilizer nitrogen. Soil Science Society of America Journal, 79, 1249–1260. doi:10.2136/sssaj2015.01.0039
Razzaghi, F., & Sepaskhah, A. R. (2012). Calibration and validation of four common ET0 estimation equations by lysimeter data in a semi-arid environment. Archives of Agronomy and Soil Science, 58, 303–319.
Roy, A. (2020). Biofertilizers for agricultural sustainability: Current status and future challenges. In: current trends in microbial biotechnology for sustainable agriculture. (pp. 525–553), Singapore: Springer. doi:10.1007/978-981-15-6949-4_21
Sampathkumar, T., Pandian, B. J., Ranghaswamy, M. V., & Manickasundaram, P. (2012). Yield and water relations of cotton-maize cropping sequence under deficit irrigation using drip system. Irrigation Drainage, 61, 208–219. doi:10.1002/ird.644
SAS Institute. (2003). SAS users’ guide. Cary (NC): SAS Institute.
Seyed Sharifi, M., & Ghalavand, A. (2018). Effect of nitroxin biofertilizer on yield and yield components of wheat under different nitrogen levels. Journal of Crop Nutrition Science, 4(1), 1-10.
Shinde, B., & Thakur, J. (2015). Influence of Arbuscular mycorrhizal fungi on chlorophyll, proteins, proline and total carbohydrates content of the pea plant under water stress condition. International Journal of Current Microbiology and Applied Science, 4, 809–821.
Shoghi-Kalkhoran, S., Ghalavand, A., Modarres-Sanavy, S. A. M., Mokhtassi-Bidgoli, A., & Akbari, P. (2018). Integrated fertilization systems enhance quality and yield of sunflower (Helianthus annuus L.). Journal of Agricultural Science and Technplogy, 15, 1343-1352.
Siddiq, M., & Pascali, M. A. (2018). Peas, sweet corn, and green beans (2nd ed.). Handbook of vegetables and vegetable processing (pp. 761–783). Wiley-Blackwell. doi:10.1002/9781119098935.ch33
Simic´, M., Dragicevic´, V., Mladenovic´ Drinic´, S., Vukadinovic´, J., Kresovic´, B., Tabakovic´, M., & Brankov, M. (2020). The contribution of soil tillage and nitrogen rate to the quality of maize grain. Agronomy, 10, 1–14. doi:10.3390/agronomy10070976
Singh, N., & Shinde, B. (2017). Efficacy of AM fungi against drought stress on sweetcorn cultivars with special reference to biochemical contents. International Journal of Bioassays, 6, 5399–5406. doi:10.21746/ijbio.2017.06.004
USDA. (1994). United States standards for grades of sweet corn. In: Shipping point and market inspection instructions for sweet corn. Retrieved from: http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5050261.
Valizadeh, Sh., & Sabbagh, S. K. (2016). Effects of Nitroxin fertilizers on expression Chitinase and Cupi4 genes in cucumber seedlings infected to Pythium Aphanidermatum. Agricultural Biotechnology Research, 14 (2), 63-71.
Wang, Y., Janz, B., Engedal, T., & de Neergaard, A. (2017). Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agricultural Water Management, 179, 271–276. doi:10.1016/j.agwat.2016.06.007
Yadav, V. K., & Supriya, P. (2014). Value addition in Maize Maize: nutrition dynamics and novel uses, Chaudhary D P, Kumar S and Langyan (Eds.). (pp. 141-152). New Dehli, India: Springer India. doi:10.1007/978-81-322-1623-0_12