بررسی الگوی بیان برخی از ژن های ناقل نیتروژن در ریشه در دو رقم مختلف گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه اصلاح نباتات و بیوتکنولوژی، دانشکده تولیدات گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ج. ا. ایران

10.22099/iar.2023.47513.1544

چکیده

در تولید محصولات زراعی، یکی از عوامل محدود کننده به ویژه در دسترس بودن نیتروژن (N) و مشتقات N است، زیرا آنها در متابولیسم و رشد گیاه اهمیت زیادی دارند. ژن های مختلف ناقل نیترات جذب، انتقال و جابجایی مجدد نیتروژن را در گیاهان واسطه می کنند. با این حال، نقش آنها با توجه به مراحل پر شدن دانه و عملکرد کلی گیاه کاملاً درک نشده است. در اینجا، بیان تعدادی از ژن‌ها و آنزیم‌های دارای نقش در جذب و متابولیسم نیتروژن در طول دوره گرده‌افشانی و در شرایط تیمار N و کمبود N در دو ژنوتیپ گندم مروارید و گنبد اندازه‌گیری شد. نمونه‌ها 10، 15 و 20 روز پس از گرده‌افشانی که مرحله‌ای حیاتی در پر شدن دانه است، گرفته شد و ارتباط بین بیان ژن، فعالیت آنزیم و روزهای پس از گرده‌افشانی نشان داده شد. مشاهده شد که بیان ژن مربوط به N به طور قابل توجهی در شرایط کمبود N و در طول دوره گرده‌افشانی افزایش می‌یابد، که نشان‌دهنده اهمیت ژن‌ها و آنزیم مربوط به N در حفظ متابولیسم و رشد گیاهان در شرایط کمبود N است.

کلیدواژه‌ها


Avila-Ospina, L., Marmagne, A., Talbotec, J., Krupinska, K., & Masclaux-Daubresse, C. (2015). The identification of new cytosolic glutamine synthetase and Asparagine Synthetase genes in barley (Hordeum vulgare L.), and their expression during leaf senescence. Journal of Experimental Botany, 66(7), 2013-2026.
Bartling, D., Radzio, R., Steiner, U., & Weiler, E. W. (1993). A glutathione S‐transferase with glutathione‐peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry, 216(2), 579-586.
Bernard, S. M., & Habash, D. Z .(2009) .The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist, 182(3), 608-620.
https://doi.org/10.1111/j.1469-8137.2009.02823.x  
Buchner, P., & Hawkesford, M. J. (2014). Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat. Journal of Experimental Botany, 65(19), 5697-5710. https://doi.org/10.1093/jxb/eru231
 Cai ,C., Zhao, XQ., Zhu, Y. G., Li, B., & Tong, Y. P. (2007). Regulation of the high-affinity nitrate transport system in wheat roots by exogenous abscisic acid and glutamine. Journal of Integrative Plant Biology, 49(12), 1719-1725. https://doi.org/10.1111/j.1744-7909.2007.00485.x
Chopin, F., Orsel, M., Dorbe, M. F., Chardon, F., Truong, H. N., Miller. A. J., Krapp, A., & Daniel-Vedele,  F. (2007). The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell, 19, 1590–1602. https://doi.org/10.1105/tpc.107.050542
Crawford, N. M., & Glass, A. D. M. (1998). Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science , 3(10), 389-395.
Duan, J., Tian, H., & Gao, Y. (2016). Expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies. Crop and Pasture Science, 67(2), 128-136.
Forde, B. G. (2000) Nitrate transporters in plants: Structure, function and regulation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1465, 219-235.
Forde, B. G .(2002). Local and long-range signaling pathways regulating plant responses to nitrate.  Annual Review of Plant Biology, 53(1), 203-224. https://doi.org/10.1146/annurev.arplant.53.100301.135256
Gao, Y., de Bang, T. C., & Schjoerring, J. K. (2019). Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnology Journal, 17, 1209-1221. https://doi.org/10.1111/pbi.13046
Good, A. G., Shrawat, A. K., & Muench, D. G. (2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science, 27(9):922-935.
Gregersen, P. L., Holm, P.B., & Krupinska, K. (2008). Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biology, 10(1), 37-49 https://doi.org/10.1111/j.1438-8677.2008.00114.x
Grudkowska, M., & Zagdanska, B. (2004). Multifunctional role of plant Cysteine Proteinases. Acta Biochimica Polonica, 51(3), 609-624.
Ho, C.-H., & Tsay, Y-F. (2010). Nitrate, ammonium, and potassium sensing and signaling. Current Opinion in Plant Biology, 13(5), 604-610.
Hoque, M. S., Masle, J., Udvardi, M. K., Ryan, P. R., & Upadhyaya, N. M. (2006). Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Functional Plant Biology, 33, 153–163.
Iqbal, A., Huiping, G., Xiangru, W. Hengheng, Z., Xiling, Z.,  & Meizhen, S. (2022). Genome-wide expression analysis reveals involvement of asparagine synthetase family in cotton development and nitrogen metabolism. BMC Plant Biology 22, 122. https://doi.org/10.1186/s12870-022-03454-7
Jahn, T. P., Møller, A. L., Zeuthen, T., Holm, L. M., Klærke, D. A., Mohsin, B., & Schjoerring, J. K. (2004). Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett, 574(1-3), 31-6. https://doi.org/10.1016/j.febslet.2004.08.004
James, M., Masclaux-Daubresse, C., Marmagne, A., Azzopardi, M., Laîné, P., Goux, D., Etienne, P., & Trouverie, J. (2019). A new role for SAG12 Cysteine Protease in roots of Arabidopsis thaliana, Frontiers in Plant Science, 9.
Kiba, T., Feria-Bourrellier, A. B., Lafouge, F., Lezhneva, L., Boutet-Mercey, S., Orsel, M., Bréhaut, V., Miller, A., Daniel-Vedele, F., Sakakibara, H., & Krapp, A. (2012). The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell, 24(1), 245–258. https://doi.org/10.1105/tpc.111.092221
Lea, P. J., & Miflin, B. J. (2003). Glutamate synthase and the synthesis of glutamate in plants. Plant Physiology and Biochemistry, 41(6-7), 555-564.
Lejay, L., Tillard, P., Lepetit, M., Olive, F. D., Filleur, S., Daniel-Vedele, F., & Gojon, A. (1999). Molecular and functional regulation of two NO3-- uptake systems by N- and C-status of Arabidopsis plants. The Plant Journal, 18(5), 509-519.
Léran, S., Varala, K., Boyer, J. C., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., ….... & Lacombe, B. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends in Plant Science, 19(1), 5-9.‏ https://doi.org/10.1016/j.tplants.2013.08.008
Leydecker, M. T., Camus, I., Daniel‐Vedele, F., & Truong, H. N. (2000). Screening for Arabidopsis mutants affected in the Nii gene expression using the Gus reporter gene. Physiologia Plantarum, 108(2), 161-170.
Lezhneva, L., Kiba, T., Feria-Bourrellier, A. B., Lafouge, F., Boutet-Mercey, S., Zoufan, P., Sakakibara, H., Daniel-Vedele, F., & Krapp, A. (2014). The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. The Plant Journal, 80(2), 230–41. https://doi.org/10.1111/tpj.12626
Liu, J., Fu, J., Tian, H., & Gao, Y. (2015). In-season expression of nitrate and ammonium transporter genes in roots of winter wheat (Triticum aestivum L.) genotypes with different nitrogen-uptake efficiencies. Crop and Pasture Science, 66(7), 671-678. https://doi.org/10.1071/CP14264
Martínez, D. E., Costa, M. L., Gomez, F. M., Otegui, M. S., & Guiamet, J. J. (2008). ‘Senescence-associated vacuoles‘ are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal, 56, 196–206. https://doi.org/10.1111/j.1365-313X.2008.03585.x
Okamoto, M., Vidmar, J. J., & Glass, A. D. M. (2003). Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant and Cell Physiology, 44(3), 304-317. https://doi.org/10.1093/pcp/pcg036
Orsel, M., Chopin, F., Leleu, O., Smith, S. J., Krapp, A., Daniel-Vedele, F., & Miller, A. J. (2006). Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiology, 142(3), 1304-1317.‏ https://doi.org/10.1104/pp.106.085209
Orsel, M., Filleur, S., Fraisier, V., & Vedele, F. (2002). Nitrate transport in plants: Which gene and which control?. Journal of Experimental Botany, 53(370), 825-833. https://doi.org/10.1093/jexbot/53.370.825
Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36.
Roxas, V. P., Smith, R. K., Allen, E. R., & Allen, R. D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15(10), 988-991.
Schroeder, J. I., Delhaize, E., Frommer, W. B., Guerinot, M. L., Harrison, M. J., Herrera-Estrella, L., …….. & Sanders, D. (2013). Using membrane transporters to improve crops for sustainable food production. Nature, 497, 60-66.‏ https://doi.org/10.1038/nature11909
Søgaard, R., Alsterfjord, M., MacAulay, N., & Zeuthen, T. (2009). Ammonium ion transport by the AMT/Rh homolog TaAMT1; 1 is stimulated by acidic pH. Pflügers Archiv-European Journal of Physiology, 458, 733-743.‏ https://doi.org/10.1007/s00424-009-0665-z
Vidmar, J. J., Zhuo, D., Siddiqi, M. Y., Schjoerring, J. K., Touraine, B., & Glass, A. D. (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology, 123(1), 307-318.
Walch-Liu, P., Ivanov, I. I., Filleur, S., Gan, Y., Remans, T., & Forde, B. G. (2006). Nitrogen regulation of root branching. Annals of Botany, 97(5), 875-881.‏ https://doi.org/10.1093/aob/mcj601
Wei ,Y., Xiong, S., Zhang, Z., Meng, X., Wang, L., Zhang, X., Yu, M., Yu, H., Wang, X., & Ma, X. (2021). Localization, gene expression, and functions of glutamine synthetase isozymes in wheat grain (Triticum aestivum L.). Frontires in Plant Science, 12, 580405. https://doi.org/10.3389/fpls.2021.580405
Yin, L. P., Li, P., Wen, B., Taylor, D., & Berry, J. O. (2007). Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2. 1) from wheat roots, and its evolutionary relationship to other NTR2 genes. Plant Science, 172(3), 621-631‏. https://doi.org/10.1016/j.plantsci.2006.11.014
Zhang, H., & Forde, B. G. (2000). Regulation of Arabidopsis root development by nitrate availability. Journal of Experimental Botany, 51(342), 51-59.
Zhao, X. Q., Li, Y. J., Liu, J. Z., Li, B., Liu, Q. Y., Tong, Y. P., ....... & Li, Z. S. (2004). Isolation and expression analysis of a high-affinity nitrate transporter TaNRT2.3 from roots of wheat. Acta Botanica Sinica, 46(3), 347-354.‏
Zhuo, D., Okamoto, M., Vidmar, J J., & Glass, A D. (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At)  in roots of Arabidopsis thaliana. The Plant Journal, 17(5), 563-568.