مطالعه مقاومت به کلرپایریفوس در موریانهMicrocerotermes diversus (Isoptera: Termitidae)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ج.ا. ایران

2 گروه تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ج.ا. ایران

10.22099/iar.2023.46735.1527

چکیده

موریانه Microcerotermes diversus Silvestri موریانه ­ای مهم در استان خوزستان می‌باشد که دامنه­ ی جستجوگری وسیعی دارد. در سال­های اخیر، مبارزه با موریانه­ ی زیرزمینی بیشتر بر مبنای کاربرد سموم شیمیایی بوده، که منجر به افزایش مقاومت به حشره­کش ­ها در این آفت شده است. در این مطالعه، مقاومت جمعیت­ های مختلف این موریانه به حشره ­کش کلرپیریفوس با کمک تعیین مقادیر LC50 این حشره­کش برای جمعیت­ های مختلف مورد آزمایش و محاسبه فعالیت دو آنزیم استیل کولین استراز و گلوتاتیون-اس- ترانسفراز مورد ارزیابی قرار گرفت. چهار جمعیت از M. diversus با تاریخچه­ متفاوتی از کاربرد حشره ­کش­ های فسفره آلی مورد استفاده قرار گرفتند. جمعیت A (ا­م­اتمیر 1)، جمعیت B (ام­التمیر 2) و جمعیت c (ملاثانی) از نخلستان هایی که به ترتیب دارای سابقه 30 ساله و 10 ساله سمپاشی با حشره کشهای فسفره آلی و بدون کاربرد این حشره کش ها بودند جمع ­آوری شدند. جمعیت D ( دانشگاه رامین) از درختان نارنج سه هفته بعد از سم­پاشی با کلرپیریفوس جمع­آوری شد. نتایج سنجش زیستی نشان داد که بیشترین و کمترین مقادیر LC50 به ترتیب در جمعیت­ های A و C وجود دارد. علاوه­ براین، میزان فعالیت استیل کولین استراز تعیین شده با استفاده از سوبستراهای استیل تیوکولین آیوداید، پروپینیل تیوکولین آیوداید و بوتریل­تیونیل آیوداید در جمعیت ­های با سابقه کاربرد حشره ­کش  کلرپایریفوس بیشتر بود (بیشترین میزان در جمعیت A). همچنین نشان داده شد که فعالیت استیل کولین استراز در جمعیت­ های  با سابقه 30 و 10 ساله کاربرد حشره­ کش با سوبسترای استیل تیوکولین آیوداید بیشتر از غعالیت این آنزیم با سوبستراهای پروپینیل تیوکولین آیوداید و بوتریل­تیونیل آیوداید  بود. مقدار ثابت میکائلیس (Km) و مقدار حداکثر سرعت (Vmax) آنزیم استیل کولین استراز به عنوان دو عامل مهم کنتیک، بیانگر بیشترین تمایل این آنزیم به سوبسترا در جمعیت A بود.

کلیدواژه‌ها


Abbott, W.S. (1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.
Askari-Saryazdi, G., Hejazi, M. J., Ferguson, J. S., & Rashidi, M. R. (2015). Selection for chlorpyrifos resistance in Liriomyza sativae Blanchard: cross-resistance patterns, stability and biochemical mechanisms. Pesticide Biochemistry and Physiology, 124, 86-92.
Behdad, E. (1984). Pests of fruit crops in Iran. Tehran: Sepehr publication.
Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Cheraghi, A., Habibpour, B., & Mossadegh, M. S. (2013). Application of bait treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin for the control of Microcerotermes diversus Silv. Psyche, :  2013, 865102. https://doi.org/10.1155/2013/865102
Elango, G., Rahuman, A. A., Kamaraj, C., Bagavan, A., Zahir, A. A., Santhoshkumar, T., & Rajakumar, G. (2012). Efficacy of medicinal plant extracts against Formosan subterranean termite, Coptotermes formosanusIndustrial Crops Production, 36(1), 524-530. https://doi.org/10.1016/j.indcrop.2011.10.032
Ellman, G. L., Courtney, K. D., Andres, J. V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemistry and Pharmacology, 7, 88-95.
Feyereisen, R. (1995). Molecular biology of insecticide resistance. Toxicological Letter, 82, 83-90.
Habibpour, B., Ekhtelat, M., Khocheili, F., & Mossadegh, M. S. (2010). Foraging population and territory estimates for Microcerotermes diversus (Isoptera: Termitidae) through mark—release—recapture in Ahwaz (Khouzestan, Iran). Journal of Economic Entomology, 103(6), 2112-2117.
Habig, W. H., Pabst, M. J., & Jakoby, W. (1974). Glutathione S-Transferases the first enzymatic step in mercapturic acid formation. Journal of Biology and Chemistry, 249(22), 7130-7139.
Iqbal, N., & Saeed, S. (2013). Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pakistan Journal of Zoology, 45(3), 709-713.
Khan Mirza, F., Yarahmadi, F., Jalal-Abadi, A. L., & Meraaten, A. A. (2020). Enzymes mediating resistance to chlorpyriphos in Aphis fabae (Homoptera: Aphididae). Ecotoxicology and Environmental Safety, 206, 111335.
Ghadamyari, M., Talebi, K., Mizuno, H., & Kono, Y. (2008). Oxydemeton-methyl resistance, mechanisms, and associated fitness cost in green peach aphids (Hemiptera: Aphididae). Journal of Economic Entomology, 101(4), 1432-1438.
Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemistry Society, 56(3), 658-666.
Marcel, V., Palacios, L. G., Pertuy, C., Masson, P., & Fournier, D. (1998). Two invertebrate acetycholinesterase show activation followed by inhibition with substrate concentration. Biochemistry, 329(2), 329-334.
Muthusamy, R., Ramkuma, G., Karthi, S., & Shivakumar, M. S. (2014). Biochemical mechanisms of insecticide resistance in field population of Dengue vector Aedes aegypti (Diptera: Culicidae). International Journal of Mosquito Research, 2(1), 1-4.
Radic, Z., Reiner, E., & Taylor, P. (1991). Role of the peripheral anionic site on acetylcholinesterase: Inhibition by substrates and coumarin derivative. Molecular Pharmacology, 39, 98-104.
Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays Biochemistry, 59, 1-41. doi: 10.1042/bse0590001. 
Russell, R. J., Claudianos, C., Campbell, P. M., Horne, I., Sutherland, T. D., & Oakeshott, J. G. (2004). Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology, 79(3), 84-93.‏
Sabry, K. H., & Abdel-Aziz, N. F. (2013). Resistance and enzyme assesment of the pink bollworm, Pectinophora gossypiella (Saunders) to spinosad. Journal of Animal Plant Science, 23(1), 136-142.
Verma, M., Sharma, S., & Prasad, R. (2009). Biological alternatives for termite control: A review. International Biodeterioration and Biodegradation, 63(8), 959-972.
Vontas, J. G., Cosmidis, N., Louka, M., Tsakas, S., Hejazi, M. J., Ayoutanti, A., & Hemingway, J. (2001). Altered acetylcholinesterase confers organophosphate resistance in the olive fruit fly Bactrocera oleae. Pesticide Biochemistry and Physiology, 71, 124-132.
https://doi.org/10.1006/pest.2001.2568
Wellington, S. M., Berger, M., Bass, C., Balbino, V. Q., Amaral, M. H. P., Campos, M. R., & Siquera, H. A. A. (2015). Status of pyrethroid resistance and mechanisms in Brazillian populatins of Tuta absoluta. Pesticide Biochemistry and Physiology, 122(3), 8-14.
Wilce, M. C., & Parker, M. W. (1994). Structure and function of glutathione S-transferases. Biochemistry and Biophysics, 1205(1), 1-18.
Yeoh, B. H., & Lee, C. Y. (2007). Tunneling responses of the Asian subterranean termite, Coptotermes gestroi in termiticide-treated sand (Isoptera: Rhinotermitidae). Sociobiology, 50(2), 457-468.
Yerushalmi, N., & Cohen, E. (2002). Acetylcholinesterase of the California red scale Aonidiella aurantii Mask: Catalysis, inhibition, and reactivation. Pesticide Biochemistry and Physiology, 72, 133-141.
Zamani, P. H., Sajedi, R., Ghadamyari, M., & Memarizadeh, N. (2014). Resistance mechanisms to chlorpyrifos in Iranian populations of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 16(2), 277-289.
Zhu, K. Y., & Clark, M. J. (1994). Purification and characterization of acetylcholinesterase from the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochemistry and Molecular Biology, 24, 453-461.
Zhu, Y. C., West, S., Snodgrass, G., & Luttrell, R. (2011). Variability in resistance-related enzyme activities in field populations of the tarnished plant bug, Lygus lineolaris. Pesticide Biochemistry Physiology, 99(3), 265-273.