اثر تاریخ کشت و رژیم‌های آبیاری بر رشد و محصول کینوا (Chenopodium quinoa ) در منطقه نیمه خشک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، ج. ا. ایران و مرکز مطالعات خشکسالی، دانشکده کشاورزی، دانشگاه شیراز ، ج. ا. ایران.

2 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، ج. ا. ایران

چکیده

کشت گیاهان مقاوم به تنش های محیطی به ویژه تنش خشکی، کارایی مصرف آب را در مناطق نیمه خشک به طور قابل ملاحظه ای بهبود می بخشد. لذا، در این تحقیق اثر رژیم های مختلف آبیاری و تاریخ کاشت بر محصول کینوا (Chenopodium quinoa)  بررسی گردید. تیمار مقدار آب آبیاری شامل آبیاری کامل و 50 درصد آبیاری کامل و تیمار تاریخ کاشت شامل شش تاریخ کاشت در اوایل بهار و شش تاریخ کاشت در اوایل پاییز انتخاب شد. نتایج نشان داد که بیشترین محصول دانه، ماده خشک، وزن خشک ریشه، شاخص سطح برگ، شاخص برداشت و اجزای محصول در کشت بهاره در اول اسفند و در کشت پاییزه در اول شهریور به دست آمد. بیشینه شاخص سطح برگ در تاریخ کاشت اول شهریور مشاهده گردید که 21 درصد بیشتر از تاریخ کاشت اول اسفند بود. همچنین، بیشترین شاخص برداشت برابر 32/0 و در تاریخ کاشت اول شهریور در آبیاری کامل مشاهده شد. کشت پاییزه در اول شهریور، باعث افزایش 30 درصدی کارایی مصرف آب برای تولید دانه نسبت به کاشت بهاره در اول اسفند در آبیاری کامل شد. درحالیکه،تفاوت معناداری در طول ویژه ریشه بین تاریخ کاشت اول اسفند و اول شهریور وجود نداشت. اعمال کم آبیاری به میزان 50 درصد آبیاری کامل در تاریخ کاشت اول شهریور، وزن خشک ریشه به اندام هوایی را 142 درصد نسبت به آبیاری کامل افزایش داد. به طور کلی، تاریخ کاشت اول شهریور در صورت وجود آب کافی در اختیار کشاورز به عنوان بهترین زمان کاشت کینوا در منطقه مورد مطالعه پیشنهاد می شود، ضمن اینکه در شرایط کم آبیاری به میزان 50 درصد، تاریخ کشت اول اسفند ماه توصیه می­گردد. 

کلیدواژه‌ها


Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., & Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357(1), 117-129.  
Ahmadi, S. H., Plauborg, F., Andersen, M. N., Sepaskhah, A. R., Jensen, C. R., & Hansen, S. (2011). Effects of irrigation strategies and soils on field grown potatoes: Root distribution. Agricultural Water Management, 98(8), 1280–1290.
Alvar-Beltrán, J., Saturnin, C., Dao, A., Dalla Marta, A., Sanou, J., & Orlandini, S. (2019). Effect of drought and nitrogen fertilisation on quinoa (Chenopodium quinoa Willd.) under field conditions in Burkina Faso. Italian Journal of Agrometeorology, 1, 33–43.
Bertamini, M., Muthuchelian, K., Rubinigg, M., Zorer, R., & Nedunchezhian, N. (2005). Low-night temperature (LNT) induced changes of photosynthesis in grapevine (Vitis vinifera L.) plants. Plant Physiology and Biochemistry, 43(7), 693–699.
Bertero, H. D. (2003). Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1–2), 87–97.
Bertero, H. D., King, R. W., & Hall, A. J. (1999). Photoperiod-sensitive development phases in quinoa (Chenopodium quinoa Willd.). Field Crops Research, 60(3), 231–243.
Bois, J. F., Winkel, T., Lhomme, J. P., Raffaillac, J. P., & Rocheteau, A. (2006). Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. European Journal of Agronomy, 25(4), 299–308.
Dini, I., Tenore, G. C., & Dini, A. (2005). Nutritional and antinutritional composition of Kancolla seeds: an interesting and underexploited andine food plant. Food Chemistry, 92(1), 125–132.
English, M., & Raja, S. N. (1996). Perspectives on deficit irrigation. Agricultural Water Management, 32(1), 1–14.
FAO (2011). Quinoa, An ancient crop to contribute to world food security. Regional Office for Latin America and the Caribbean, 2, 73–87.
 Garcia, M., Raes, D., & Jacobsen, S. E. (2003). Evapotranspiration analysis and irrigation requirements of quinoa (Chenopodium quinoa) in the Bolivian highlands. Agricultural Water Management, 60(2), 119–134.
Geerts, S, Raes, D., Garcia, M., Condori, O., Mamani, J., Miranda, R., Cusicanqui, J., Taboada, C., Yucra, E., & Vacher, J. (2008). Could deficit irrigation be a sustainable practice for quinoa (Chenopodium quinoa Willd.) in the Southern Bolivian Altiplano? Agricultural Water Management, 95(8), 909–917.
Geerts, S, Raes, D., Garcia, M., Del Castillo, C., & Buytaert, W. (2006). Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agricultural and Forest Meteorology, 139(3–4), 399–412.
Geerts, S, Raes, D., Garcia, M., Miranda, R., Cusicanqui, J. A., Taboada, C., Mendoza, J., Huanca, R., Mamani, A., & Condori, O. (2009a). Simulating yield response of quinoa to water availability with AquaCrop. Agronomy Journal, 101(3), 499–508.
Geerts, S., Raes, D., Garcia, M., Taboada, C., Miranda, R., Cusicanqui, J., Mhizha, T., & Vacher, J. (2009b). Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agricultural Water Management, 96(11), 1652–1658.
González, J. A., Gallardo, M., Hilal, M. B., Rosa, M. D., & Prado, F. E. (2009). Physiological responses of quinoa (Chenopodium quinoa) to drought and waterlogging stresses: dry matter partitioning. Botinical Studies 50(1), 35-42.
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.
Hellin, J., & Higman, S. (2003). Feeding the market: South American farmers, trade and globalization.  Londen. UK: Intermediate Technology Development Group and Latin American Bureau.
Hirich, A, Choukr-Allah, R., & Jacobsen, S.-E. (2014a). Quinoa in Morocco – Effect of sowing dates on development and yield. Journal of Agronomy and Crop Science, 200(5), 371–377.
Hirich, A, Choukr Allah, R., & Jacobsen, S. -E. (2014b). Deficit irrigation and organic compost improve growth and yield of quinoa and pea. Journal of Agronomy and Crop Science, 200(5), 390–398.
Hirich, Abdelaziz, Choukr-Allah, R., & Jacobsen, S.-E. (2014c). The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa Willd.) productivity. Desalination and Water Treatment, 52(10–12), 2208–2213.
Jacobsen, S.-E. E., Monteros, C., Christiansen, J. L., Bravo, L. A., Corcuera, L. J., & Mujica, A. (2005). Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy, 22(2), 131–139.
Jacobsen, S.-E., Mujica, A., & Jensen, C. R. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1–2), 99–109.
Jacobsen, S.-E., & Stølen, O. (1993). Quinoa-morphology, phenology and prospects for its production as a new crop in Europe. European Journal of Agronomy, 2(1), 19–29.
Jacobsen, S. -E., & Bach, A. P. (1998). The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd. Seed Science and Technology (Switzerland), 26(2), 515–523.
Kaya, Ç. I., Yazar, A., & Sezen, S. M. (2015). SALTMED Model performance on simulation of soil moisture and crop yield for quinoa irrigated using different irrigation systems, irrigation strategies and water qualities in Turkey. Agriculture and Agricultural Science Procedia, 4, 108–118. https://doi.org/10.1016/j.aaspro.2015.03.013
Mamedi, A., Tavakkol Afshari, R., & Oveisi, M. (2017). Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science, 48(Special Issue), 89–100.
Mehrabi, F., & Sepaskhah, A. R. (2019). Partial root zone drying irrigation, planting methods and nitrogen fertilization influence on physiologic and agronomic parameters of winter wheat. Agricultural Water Management, 223, 105688.
Newman, E. I. (1966). A method of estimating the total length of root in a sample. Journal of Applied Ecology, 3(1), 139–145.
Nurse, R. E., Obeid, K., & Page, E. R. (2016). Optimal planting date, row width, and critical weed-free period for grain amaranth and quinoa grown in Ontario, Canada. Canadian Journal of Plant Science, 96(3), 360–366.
Padilla, F. M., & Pugnaire, F. I. (2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21(3). 489–495.
Peterson, A. J., & Murphy, K. M. (2015). Quinoa cultivation for temperate North America: Considerations and areas for investigation. In: Murphy, K. M., Matanguihan, J., (Eds.), Quinoa: Improvement and sustainable production (pp. 173-192). Hoboken, NJ: John Wiley & Sons, INC.
Razzaghi, F., Plauborg, F., Jacobsen, S.-E. E., Jensen, C. R., & Andersen, M. N. (2012). Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agricultural Water Management, 109, 20–29.
Razzaghi, F., & Sepaskhah, A. R. (2012). Calibration and validation of four common ET0 estimation equations by lysimeter data in a semi-arid environment. Archives of Agronomy and Soil Science, 58(3), 303–319.
Razzaghi, F., Henriksen, S., Naghdyzadegan, J. M.,  Anderson, M. N., & Jacobsen, S. E. (2016) Potentioal of quinoa  production in humid and dry regions under different irrigation and soil conditions: Denmark and Iran. International quinoa conference 2016, (pp.142). UAE: Dobai.
Repo-Carrasco, R., Espinoza, C., & Jacobsen, S.-E.-E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1–2), 179–189.
Riccardi, M., Pulvento, C., Lavini, A., d’Andria, R., & Jacobsen, S. E. (2014). Growth and ionic content of quinoa under saline irrigation. Journal of Agronomy and Crop Science, 200(4), 246–260.
Risi, J. C. & Galwey N. W. (1984). The Chenopodium grains of the Andes: Inca crops for modern agriculture. Advances in Applied Biology, 10, 145–216.
Sajjad, A., Munir, H., Ahmed Anjum, S., Tanveer, M., & Rehman, A. (2014). Growth and development of C at different sowing  dates. Chenopoduim quinoa genotypes. Journal of Agricultural Research. 52(4), 595-546
Sanchez, H. B., Lemeur, R., Damme, P. Van, & Jacobsen, S.-E. (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1–2), 111–119.
Talebnejad, R., & Sepaskhah, A. R. (2015a). Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa. Agricultural Water Management, 159, 225–238.
Talebnejad, R., & Sepaskhah, A. R. (2015b). Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management, 148, 177–188. https://doi.org/10.1016/j.agwat.2014.10.005
Talebnejad, R, & Sepaskhah, A. R. (2014). Effects of deficit irrigation and groundwater depth on root growth of direct seeding rice in a column experiment. International Journal of Plant Production, 8(4), 563–586.
Talebnejad, R., & Sepaskhah, A. R. (2016). Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity. Archives of Agronomy and Soil Science, 62(10), 1347–1367. 5
Walters, H., Carpenter-Boggs, L., Desta, K., Yan, L., Matanguihan, J., & Murphy, K. (2016). Effect of irrigation, intercrop, and cultivar on agronomic and nutritional characteristics of quinoa. Agroecology and Sustainable Food Systems, 40(8), 783–803. 5
Yarami, N., & Sepaskhah, A. R. (2015). Saffron response to irrigation water salinity, cow manure and planting method. Agricultural Water Management, 150, 57–66.
Yazar, A., Sezen, S. M., Bozkurt Çolak, Y., Ince Kaya, Ç., & Tekin, S. (2017). Effect of planting times and saline irrigation of quinoa using drainage water on yield and yield components under the Mediterranean environmental contitions. International Journal of Research in Agriculture and Forestry. 4(7), 8–16.
Zurita Silva, A., Jacobsen, S.-E., Razzaghi, F., Álvarez Flores, R., Ruiz, K. B., Morales, A., & Silva Ascencio, H. (2015). Quinoa drought responses and adaptation. In Bazile, D., Bertero, D., & Nieto, C. (Eds.), State-of-the-art report of quinoa around the world in 2013 (pp. 157-171).  Italy: FAO & CIRAD.