واکنش صفات اگرو فیزیولوژیکی لوبیا تپاری (Phaseolus acutifolius L.) به الگو و تراکم‌های کاشت

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زراعت و اصلاح نباتات، دانشگاه آزاد اسلامی واحد اراک ، اراک، ج. ا. ایران

چکیده

ت
-تراکم بوته و الگوی کاشت از ابزارهای مدیریتی کارآمد برای به حداکثر رساندن عملکرد محصول با بهینه سازی استفاده از منابع مانند نور، مواد مغذی، آب و کاهش تبخیر سطح خاک است. این آزمایش با هدف بررسی تأثیر الگوی کاشت و تراکم بوته بر صفات فیزیولوژیکی و بیوشیمیایی لوبیای تپاری (Phaseolus acutifolius L.) به صورت کرت­های خرد شده در قالب طرح بلوک­های کامل تصادفی با سه تکرار طی سال های 2017 و 2018 در ایستگاه تحقیقاتی دانشگاه آزاد اسلامی اراک اجرا شد. عامل اصلی شامل الگوی کاشت در دو سطح (کاشت یک ردیف و کاشت دو ردیف) و عامل فرعی تراکم بوته در سه سطح تراکم 30 ، 40 و50 بوته در متر مربع بودند. نتایج نشان داد که در سال دوم در کاشت یک ردیف، تراکم 40 بوته در متر مربع ​​به ترتیب 75 و 65 درصد عملکرد دانه را در مقایسه با تراکم 30 و50 بوته در متر مربع در همین الگوی کاشت افزایش داد. مقدار کلروفیل در سال اول تحت کاشت دو ردیف و کاشت با تراکم متوسط ​​در مقایسه با کاشت با تراکم زیاد و تراکم کم، 20 درصد افزایش یافت. بیشترین میزان تجمع کربوهیدرات­های بذر با 26/38 میلی­گرم در گرم در کشت دو ردیف و کاشت با تراکم متوسط ​​در سال دوم به دست آمد. در مقایسه با کاشت دو ردیف و کاشت با تراکم متوسط​​، محتوای نسبی آب برگ به طور قابل توجهی تا 24 درصد در گیاهان تحت کاشت یک ردیف و کاشت با تراکم کم کاهش یافت. کمترین محتوای مالون دی آلدئید و تجمع پرولین به ترتیب با 2/3 و 225 میکرومول در گرم به ترتیب در کاشت دو ردیف و کاشت با تراکم متوسط ​​بدست آمد. در نهایت، الگوی کشت دو ردیف و تراکم متوسط ​​برای بدست آوردن عملکرد مطلوب لوبیای تپاری توصیه می­گردد.

کلیدواژه‌ها


Abu-Grab, O. S., Ahmed, S. M., & EL-Ghonemy, M. A. M. (2019). Effect of deficit irrigation and planting method on maize plants under middle delta conditions of Egypt. Plant Production, 10(11), 883-890. DOI: 10.21608/JPP.2019.62278
Aleksza, D., Horvath, G. V., Sandor, G., & Szabados, L. (2017). Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiology, 175(1), 555-567. DOI: 10.1104/pp.17.00791
Aquino Portes, T., & Melo, H. C. (2014). Light interception, leaf area and biomass production as a function of the density of maize plants analyzed using mathematical models. Acta Scientiarum. Agronomy, 36(4), 457-463. Doi: 10.4025/actasciagron.v 36i4.17892.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta Vulgaris. Journal of Plant Physiology, 24(1), 1-15. DOI: 10.1104/pp.24.1.1
Assefa, T., Mahama, A. A., Brown, A. V., Cannon, E. K., Rubyogo, J. C., Rao, I. M., & Cannon, S. B. (2019). A review of breeding objectives, genomic resources, and marker- assisted methods in common bean (Phaseolus vulgaris L.). Molecular Breeding, 39(2), 20-29.
Bagheri, M. A, Najafi zarini, H. (2015) Investigation of differential protein expression of protective proteins under salinity stress in Arabidopsis by iTRAQ-2DLC-MS/MS and analysis of gene expression and related gene network. Crop Biotechnology, 11, 38-49.
Barris, H. D., & Weatherley, P. F. (1962). A reexamination turgidity technique of estimating water deficit leaves. Ausralian Journal of Biological Science, 15, 413-428.
Bates, L. S, Walderen, R. D., & Taere, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205-207. DOI: 10, 1007/bf00018060
Bennet, J. P. & Adams, M. W. (1977). Pod yield component variation and intercorrelation in Phaseolus vulgaris L. as affected by plant density. Crop Science, 17, 73-75.
Davies B. H. (1976). Carotenoids. In: Goodwin TW. (Ed.). Chemistry and biochemistry of plant pigments. New York: Academic Press, 2, 38-165.
Eskandari Zanjani, K., Shirani Rad, A. H., Naeemi, M., Aghdam, M., & Taherkhani, T. (2010). Effects of zeolite and selenium application on some physiological traits and oil yield of medicinal pumpkin (Cucurbita pepo L.) under drought stress. Current Research Journal. Biological Sciences, 4(4), 462-470.
Gezahegn, A. M. (2019). Review on effect of plant density and planting arrangement on faba bean production. World Journal of Agricultural Sciences, 15(4), 261-268. DOI: 10.5829/idosi.wjas.2019.261.268
Gujaria-Verma, N., Ramsay, L., Sharpe, A. G., Sanderson, L. A., Debouck, D. G., Tar’an, B., & Bett, K. E. (2016). Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (Phaseolus vulgaris) for diversity analysis and comparative mapping. BMC Genomics, 17(1), 239. DOI: 10.1186/s12864-016-2499-3.
Heath, R. L., & Packer, L. (1969). Photoperoxidation in isolated chloroplast kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. DOI: 10.1016/0003-9861(68)90654-1
Heredia-Rodriguez, L., Gaytan-Martínez, M., Morales-Sanchez, E., Garza-Juarez, A. G., UriasOrona, V., González-Martínez, B. E., López-Cabanillas Lomelí, M., & Vázquez-Rodríguez, G. A. (2019). Nutritional and technological properties of Tepary bean (Phaseolus acutifolius) cultivated in Mexican Northeast. Czech Journal of Food Sciences, 37, 2019 (1), 62–68.
Ikeda, T. (1992). Soybean planting patterns in relation to yield and yield components. Agronomy Journal, 89, 923-926.
Irigoyen, J. J., Emerich, D. W., & Sanchez-Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarun, 84(1), 55-60.
Khalil, S. K., Wahab, A., Amanulla, A., & Khan, A. Z. (2011). Variation in leaf traits, yield and yield components of faba bean in response to planting dates and densities. Egyptian Academic Journal of Biological Sciences, 2(1), 35-43.
Liu, S., Baret, F., Allard, D., Jin, X., Andrieu, B., Burger, P., Hemmerlé, M., & Comar, A. (2017). A method to estimate plant density and plant spacing heterogeneity: Application to wheat crops. Plant Methods, 13:38. DOI 10.1186/s13007-017-0187-1
Mhlaba, Z. B., Mashilo, J., Shimelis, H., Assefa, A. B., & Modi, A. T. (2018). Progress in genetic analysis and breeding of tepary bean (Phaseolus acutifolius A. Gray): A review. Scientia Horticulturae, 237,112-119.
Mao, S., Robiul Islam, M. R., Hu, Y., Qian, X., Chen, F., & Xue, X. (2011). Antioxidant enzyme activities and lipid peroxidation in corn (Zea mays L.) following soil application of super absorbent polymer at different fertilizer regimes. African Journal of Biotechnology, 10(49), 10000-10008. DOI: 10.5897/AJB11.1348
Onat, B., Bakal, H., Gulluoglu, L., & Arioglu, H. (2016). The effects of row spacing and plant density on yield and yield components of peanut grown as a double crop in mediterranean environment in Turkey. Turkish Journal of Field Crops, 22(1), 71-80.
Sharma, S., & Verslues, P. E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell & Environment, 33(11), 1838-1851. DOI: 10.1111/j.1365-3040. 2010.02188. x
Soratto, R. P., Catuchi, T. A., Souza, E. C., & Garcia, J. L. N. (2017). Plant density and nitrogen fertilization on common bean nutrition and yield. Revista Caatinga, 30(3), 670-678. DOI:10.1590/1983-21252017v30n315rc
Toker, C. (2004). Estimates of broad‐sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.). Hereditas, 140(3), 222-225. DOI: 10.1111/j.1601-5223.2004.01780. x
Turgut, I., Duman, A., Bilgili, U., & Acikgoz, E. (2005). Alternate row spacing and plant density effects on forage and dry matter yield of corn hybrids (Zea mays L.). Journal of Agronomy and Crop Science, 191(2), 146-151. DOI: 10.1111/j.1439-037X.2004.00146. x
Venugopalan, M. V., Kranthi, K. R., Blaise, D., Lakde, S., & Sankaranarayana, K. (2014). High density planting system in cotton—The Brazil experience and Indian initiatives. Journal of Cotton Research,  5(2), 1-7.
Worku, W., Skjelvag, A., & Gislerod, H. (2004). Responses of common bean (Phaseolus vulgaris L.) to photosynthetic irradiance levels during three phenological phases. Agronomie, 24(5), 267-274.
Wang, R., Cheng, T., & Hu, L. (2015). Effect of wide–narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Research, 172, 42-52. DOI: https://doi.org/10.1016/j.fcr.2014.12.005
Yao, H., Zhang, Y., Yi, X., Hu, Y., Luo, H., Gou, L., & Zhang, W. (2015). Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Research, 184, 39-49. DOI: https://doi.org/10.1016/j.fcr.2015.09.005