تشخیص صوتی آردی شدن سیب براساس ماشین‌بردار پشتیبان

نوع مقاله : مقاله کامل

نویسندگان

بخش مکانیک بیوسیستم، دانشکده کشاورزی و منابع طبیعی، دانشگاه اراک، اراک، ج. ا. ایران

چکیده

آردی‏شدن، کیفیت میوه سیب را تنزل می‏دهد و این پدیده نقش مهمی در بازار میوه ایفا می‏کند. بنابراین استفاده از تکنیکی سریع و قابل اعتماد برای اندازه‏گیری و درجه‏بندی میوه‏ها ضروری است. در این تحقیق، قابلیت سیگنال‏های صوتی سیب‏های غلتان بر روی صفحه شیب‏دار به عنوان روشی نوین در تشخیص غیرمخرب آردی شدن سیب رقم رد دلیشز مورد بررسی قرار گرفت. با استفاده از آزمون مخرب فشردگی محصور، میزان آردی شدن نمونه‏ها ارزیابی شد. مدل‏های ماشین بردار پشتیبان برای طبقه‏بندی سیب‏ها در نظر گرفته شد. از کرنل تابع پایه شعاعی در مدل‏های ماشین بردار پشتیبان استفاده شد. مطابق روش جستجوی جامع، مدلی با ترکیب 9 ویژگی به عنوان بهترین مدل انتخاب شد. نتایج نشان داد که میزان دقت کلی این روش برای تشخیص سیب‏های سالم و آردی برابر 5/85 درصد به دست آمد. نتایج حاکی از آن بود که روش مذکور از توانمندی خوبی برای تشخیص سیب‏های آردی برخوردار است

کلیدواژه‌ها


Arana, I., Jarén, C., & Arazuri, S. (2004). Apple mealiness detection by non-destructive mechanical impact. Journal of Food Engineering, 62(4), 399-408.
Arefi, A., Moghaddam, P. A., Mollazade, K., Hassanpour, A., Valero, C., & Gowen, A. (2015). Mealiness detection in agricultural crops: destructive and nondestructive tests: A review. Comprehensive Reviews in Food Science and Food Safety, 14(5), pp.657-680.
Arefi, A., Moghaddam, P. A., Hassanpour, A., Mollazade, K., & Motlagh, A. M. (2016). Non-destructive identification of mealy apples using biospeckle imaging. Postharvest Biology and Technology, 112, 266-276.
Bechar, A., Mizrach, A., Barreiro, P., & Landahl, S. (2005). Determination of mealiness in apples using ultrasonic measurements. Biosystems Engineering, 91(3), 329-334.
Chen, F. L., & Li, F. C. (2010). Combination of feature selection approaches with SVM in credit scoring. Expert Systems with Applications, 37(7), 4902-4909.
Corollaro, M. L., Aprea, E., Endrizzi, I., Betta, E., Demattè, M. L., Charles, M., Bergamaschi, M., Costa, F., Biasioli, F., Grappadelli, L. C., & Gasperi, F. (2014). A combined sensory-instrumental tool for apple quality evaluation. Postharvest Biology and Technology 96, 135–144.
Diezma-Iglesias, B., Valero, C., García-Ramos, F. J., & Ruiz-Altisent, M. (2006). Monitoring of firmness evolution of peaches during storage by combining acoustic and impact methods. Journal of Food Engineering, 77(4), 926-935.
Dua, S., & Du, X. (2011). Data mining and machine learning in Cybersecurity. Taylor and Francis Group.
Ebrahimi, E., & Mollazade, K. (2010). Integrating fuzzy data mining and impulse acoustic techniques for almond nuts sorting. Australian Journal of Crop Science, 4(5), 353-358.
Felici, G., & Vercellis, C. (2008). Mathematical methods for knowledge discovery and data mining. Hershey, Pennsylvania, IGI Global.
Hall, M., Witten, I., & Frank, E. (2011). Data mining: Practical machine learning tools and techniques. Burlington: Kaufmann.
Huang, C. L., Liao, H. C., & Chen, M. C. (2008). Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Systems with Applications, 34(1), 578-587.
Huang, M. & Lu, R., (2010). Apple mealiness detection using hyperspectral scattering technique. Postharvest Biology and Technology, 58(3), 168-175.
Huang, M., Zhu, Q., Wang, B., & Lu, R. (2012). Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification. Computers and Electronics in Agriculture, 89, 175-181.
Mendoza, F., Lu, R., & Cen, H. (2014). Grading of apples based on firmness and soluble solids content using Vis/SWNIR spectroscopy and spectral scattering techniques. Journal of Food Engineering 125, 59–68.
Moshou, D., Wahlen, S., Strasser, R., Schenk, A., & Ramon, H. (2003). Apple mealiness detection using fluorescence and self-organising maps. Computers and Electronics in Agriculture, 40(1), 103-114.
Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347.
Peneau, S., Brockhoff, P. B., Hoehn, E., Escher, F., & Nuessli, J. (2007). Relating consumer evaluation of apple freshness to sensory and physico-chemical measurements. Journal of Sensory Studies 22, 313–335.
Seppä, L., Peltoniemi, A., Tahvonen, R., & Tuorila, H. (2013). Flavour and texture changes in apple cultivars during storage. LWT-Food Science and Technology 54, 500–512.
Studman, C. J. (2001). Computers and electronics in postharvest technology—a review. Computers and Electronics in Agriculture, 30(1), 109-124.
Theodoridis, S., & Koutroumbas, K. (2009). Pattern Recognition (4th ed). Elsevier Inc.
Tiplica, T., Vandewalle, P., Verron, S., Grémy-Gros, C., & Mehinagic, E. (2010). Identification of apple varieties using acoustic measurements. In Conférence Internationale en Métrologie (CAFMET'10), p.103. Egypt: Cairo,
Unay, D., Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F. & Debeir, O. (2011). Automatic grading of Bi-color,ed apples by multispectral machine vision. Computers and Electronics in Agriculture, 75(1), pp.204-212.
Valero, C., Barreiro, P., Ruiz-Altisent, M., Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., Johnson, D., & Dover, C. (2005). Mealiness detection in apples using time resolved reflectance spectroscopy. Journal of Texture Studies, 36(4), 439-458.
Zhang, W., Cui, D., & Ying, Y. (2014). Nondestructive measurement of pear texture by acoustic vibration method. Postharvest Biology and Technology, 96, 99-105.