تنوع مورفو-فنولوژی و عددکروموزومی در ژنوتیپ‌های ایرانی Bromus danthoniae Trin

نوع مقاله : مقاله کامل

نویسندگان

گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج. ا. ایران

چکیده

چکیده-گونه Bromus danthoniae Trin. گراس یکساله است که اساساً در شیب­ها و دامنه­های صخره­ای خشک و مناطق استپی رشد می­کند، توسط بسیاری از حیوانات چرا شده و به عنوان یک گیاه مرتعی کارا شناخته می­شود.  عدد کروموزومی و صفات مورفولوژی و آناتومی 82 ژنوتیپ از این گونه (شامل سه زیر گونه) مورد بررسی قرار گرفت و تعداد 27 صفت کمی و 20 صفت کیفی اندازه­گیری شد. نتایج تجزیه واریانس نشان داد ژنوتیپ­های مورد مطالعه در همه صفات کمی آزمون شده تفاوت معنی دار داشته­اند. بر مبنای نتایج حاصل از تجزیه کلاستر ژنوتیپ­ها در چهار گروه قرار گرفتند که عمدتاً با گروه­بندی بر اساس زیرگونه­ مطابقت داشت. همچنین نتایج حاصل از بررسی همبستگی­ها نشان داد طول لما همبستگی مثبت و بالایی با صفات دیگر مانند طول سیخک (55/0=r)، عرض لما (72/0=r) و طول دانه (84/0=r) داشت. علاوه بر آن، عرض لما همبستگی بالا و معنی­داری با سایر صفات مانند تعداد گل در سنبلچه (47/0=r) و طول دانه (58/0=r) داشت. نتایج تجزیه به عامل­ها نشان داد سه عامل اول توانست در مجموع 51% از تنوع کل را توجیه کند. بطور کل، صفات طول و عرض لما قابل اعتماد ترین صفات در مطالعات مورفولوژی این گونه بوده است. همچنین نتایج نشان داد B. danthoniae subsp. danthoniae و B. danthoniae var.lanuginusos Roshev. دیپلویید (14=x2=n2)، در حالیکه B. danthoniae subsp. pseudodanthoniae (Drobov) H. Scholz تتراپلویید (24=x4=n2) است. بر اساس نتایج حاصل از بررسی­های آناتومی سطح برگ، ژنوتیپ­ تتراپلویید دارای اندازه روزنه بزرگتر و تراکم روزنه کمتر نسبت به ژنوتیپ­های دیپلویید بود. بنابراین وجود ارتباط جامع بین اندازه ژنوم و اندازه سلول­های نگهبان روزنه به عنوان معیاری برای تمایز سطوح پلوییدی متفاوت این گونه رد نخواهد شد. تنوع مورفولوژی بالا بین ژنوتیپ­های مطالعه شده، پراکندگی وسیع رشدی آن را توصیف کرده و ما را قادر می­سازد که با استفاده از این گیاه در برنامه­های اصلاحی گیاهان، تولیدات مرتعی را افزایش دهیم.

کلیدواژه‌ها


Agayev, Y. M. (2002). New features in karyotype structure and origin of saffron, Crocus sativus L. Cytologia, 67, 245-252.
Anderson, J. T., Inouye, D.W., McKinney, A. M., Colautti, R. I., & Mitchell Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society of London B: Biological Science, 279, 3843-3852.
Arzani, A., & Ashraf, A. (2016). Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35,146-189.
Aulicino, M. B., & Arturi, M. J. (2002). Phenotypic diversity in Argentinian populations of Bromus catharticus (Poaceae). Genetic and environmental components of quantitative traits. New Zealand  Journal of Botany, 40, 223-234.
Aulicino, M. B., & Arturi, M. J. (2008). Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological divergence associated with environmental conditions. Anales Del Jardin Botanico Madrid, 65, 135-147.
Beck, S. L., Dunlop, R. W., & Fossey, A. (2003). Stomatal length and frequency as a measure of ploidy level in black wattle Acacia mearnsii (de Wild). Botanical Journal of the Linnean Society, 141, 177-181.
Beaulieu, J. M., Leitch, I.J., Patel, S., Pendharkar, A., & Knight, C.A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist, 179, 975-986.
Bor, N. L. (1970). Gramineae. pp. 130-132. In: Rechinger, K. H. (ed). Flora Iranica. Vol 70 Akademische Drucku Verlagsanstalt Graz.
Clayton, W. D., Vorontsova, M. S., Harman, K. T., & Williamson, H. (2006). Onwards Grass Base. The Online World Grass Flora Website http:// www keworg/ data/ grasses-dbhtml.
Contreras, R. N., Ranney, T. G., & Tallury, S. P. (2007). Reproductive behavior of diploid and allotetraploid Rhododendron L. ‘Fragrant Affinity’. Horticultural Science, 42, 31-34.
Erickson, V. J., Mandel, N. L., & Sorensen, F. C. (2004). Landscape patterns of phenotypic variation and population structuring in a selfing grass Elymus glaucus (blue wild rye). Canadian Journal of Botany, 82, 1776–1789
Feng, H. A. O., Zhu, X. U., Wei  ong, Y. A. N., Ping, L. I., Ying, L. I. U., & Yan cheng, H. U. (2011). Morphological variations analysis of Bromus catharticus germplasm. Acta Agrestia Sinica 4, 24.33
Hamzehee, B., Alemi, M., Attar, F., & Ghahreman, A. (2007). Bromus catharticus and Bromus danthoniae var. Uniaristatus (Poaceae) two new records from Iran. Iranian Journal of Botany, 13, 33–36.
Hegarty, M., Coate, J., Sherman Broyles, S., Abbott, R., Hiscock, S, & Doyle, J. (2013). Lessons from natural and artificial polyploids in higher plants. Cytogenetic and Genome Research, 140, 204-225.
Hufft, R. A., & Zelikova, T. J. (2016). Ecological genetics, local adaptation, and phenotypic plasticity in Bromus tectorum in the context of a changing climate. pp. 133-154. In Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer International Publishing.
Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis 6th Edn. Pearson Prentice Hall Upper Saddle River NJ USA. Johnson, R. C., Erickson, V. J., Mandel, N. L., Clair, J. B., & Vance Borland, K. W. (2010). Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of Eastern Oregon USA. Botany, 88, 725–736.
Jones, J. R., Ranney, T. G., Lynch, N. P., & Krebs, S. L. (2007).Ploidy levels and genome sizes of diverse species hybrids and cultivars of Rhododendron. Journal American Rhododendron Society, 61, 220-227.
Kamari, G., Felber F., & Garbari, F. (1998). Mediterranean chromosome number reports. Flora Mediterranea,8, 213-313.
Klos, J., Sliwinska, E., Kula, A., Golczyk, H., Grabowska Joachimiak, A., Ilnicki, T., Szostek, K. Stewart, A., & Joachimiak, A.J. (2009). Karyotype and nuclear DNA content of hexa- octo- and duodecaploid lines of Bromus subgen. Ceratochloa. Genetics and Molecular Biology, 32, 528-537.
Koch, M. A., Meyer, N., Engelhardt, M., Thiv, M., Bernhardt, K. G., & Michling, F. (2016). Morphological and genetic variation of highly endangered Bromus species and the status of these Neolithic weeds in Central Europe. Plant Systematics and Evolution, 302, 515-525.
Lomax, B. H., Hilton, J., Bateman, R. M., Upchurch, G. R., Lake, J. A., Leitch, I. J., Cromwell, A., & Knight, C. A. (2014). Reconstructing relative genome size of vascular plants through geological time. New Phytologist, 201, 636-644.
Memariani, F. M. R., & JoharchiArjmandi, A. A. (2012). A revision of Bromus sect Triniusa (Poaceae) in Khorassan (Iran). Rostaniha, 13, 189-196.
Mirzaie-Nodoushan, H., Headari Sharifabad, H., Asadi Corom, F., & Shariat, A. (2006). Evolutionary karyotypic variation in Bromus tomentellus populations. Cytologia, 71, 297-301.
Monda, K., Araki, H., Kuhara, S., Ishigaki, G., Akashi, R., Negi, J., Kojima, M., Sakakibara, H., Takahashi, S., Hashimoto Sugimoto, M., & Go to, N. (2016). Enhanced stomatal conductance by a spontaneous Arabidopsis Tetraploid Me-0 results from increased stomatal size and greater stomatal aperture. Plant Physiology, 170, 1435–1444.
Naderi, R., & Rahiminejad, M. R. (2015). A taxonomic revision of the genus Bromus (Poaceae) and a new key to the tribe Bromeae in Iran. Annales Botanici Fennici, 52, 233–248.
Novak, S. J., & Mack R. N. (2016). Mating system introduction and genetic diversity of Bromus tectorumin North America, the most notorious product of evolution within Bromus section Genea. Pp. 99–132.In Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer International Publishing.
Nwokeocha, C. C. (2015). Botanical indices of ploidy levels in some African accessions of Oryzapunctata Kotschy ex Steud. International Journal of Biological and Chemical Sciences, 9, 35-47.
Oja, T., & Jaaska, V. (1998). Allozyme diversity and phylogenetic relationships among diploid annual bromes (Bromus Poaceae). Annales Botanici Fennici, 35, 123–130.
Oja, T., & Paal, J. (2004). Multivariate analysis of morphological variation among closely related species Bromus japonicas, B. squarrosus and B. arvensis (Poaceae) in comparison with isozyme evidences. Nordic Journal of Botany, 24, 691-702.
Rezaei, M., Arzani, A., Saeidi, G., & Karami, M. (2017). Physiology of salinity tolerance in Bromus danthoniae genotypes originated from saline and non-saline areas of West Iran. Crop and Pasture Science, 68, 92–99.
Saarela, J. M., Peterson, P. M., Keane, R. M., Cayouette, J., & Graham, S. W. (2007). Molecular phylogenetics of Bromus (Poaceae: Pooideae) based on chloroplast and nuclear DNA sequence data. Aliso, 23, 450–467.
SAS Institute. (2011). SAS 9.3 procedures guide. Cary NC USA: SAS Institute Inc.
Sattler, M. C., Carvalho, C. R., & Clarindo, W. R. (2016). The polyploidy and its key role in plant breeding. Planta, 243, 281–296.
Scholz, H. (1998). Notes on Bromus danthoniae and relatives (Gramineae). Willdenowia, 28, 143–150.
Shannon, C.E., & Weaver, W. (1998). The mathematical theory of communication. University of Illinois Press.
Sheidai, M., & Fadaei, F. (2005). Cytogenetic studies in some species of Bromus L. section Genea Dum. Journal of Genetics, 84,189–194.
Sheidai, M., & Nourozi, M. (2005). Cytological studies on some species of Bromus sect Bromus. Botanica Lithuanica, 11, 141-150.
Skrajna, T., Kubicka, H., & Rzymowska, Z. (2012). Phenotypic variation in relation to seed storage protein polymorphism in Bromus secalinus L. (Gramineae) populations from north-eastern Poland. Polish Journal of Ecology, 60, 41-55.
Smith, P. M. (1981).Ecotypes and subspecies in annual brome-grasses (Bromus, Gramineae). Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Pflanzengeographie, 102, 497-509.
Townsend, C. C., & Guest E. (1968).Flora of Iraq. Volum 9. pp. 136-140.Ministry of Agriculture of the Republic of Iraq.
Valdés, B., Scholz, H., Von Raab Straube, E., & Parolly, G. (2009). Poaceae (pro parte majore). The Euro Med Plant Base–the information resource for Euro-Mediterranean plant diversity. Available online at: http:// ww2. bgbm.org/ EuroPlusMed/ (accessed 30 November 2016)
Watson, L., & Dallwitz, M.J. (1992). The grass genera of the world. CAB. International, Wallingford, UK.