Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapo-transpiration: Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. UN-FAO, Rome, Italy.
Basiri, A. (2008). Statistical Design in Agricultural Sciences. 7th ed. Shiraz University Publication. PP 386.(In Persian)
Du, T., Sh Kang, SH., Sun, J., Zhang, X., & Zhang, J. (2010). An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agricultural Water Management, 97, 66-74.
English, M.J., & Nuss, G.S. (1982). Designing for deficit irrigation. Journal of Irrigation and Drain Engineering, 108(2), 91-101.
Hargreaves, G.H., & Samani, Z.A. (1984). Economic consideration of deficit irrigation. Journal of Irrigation and Drain Engineering, 129(1), 1-10.
Herrero, M.P., & Johnson, R.R. (1981). Drought stress and its effects on maize reproductive systems. Crop Science, 21, 105-110.
Jaliliyan, A., Shirvani, A.L., Nemati, A., & Saheli, J. (2001). Effect of deficit irrigation on production and economics of sugar beet in Kermanshah district. Sugar Beet, 16(1), 1-14.
Kang, Sh., Shi, W., Cao, H., & Zhang, J. (2000). An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 67, 207-214.
Kang, Sh., Shi, W., Cao, H., & Zhang, J. (2002). Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays). Field Crops Research, 77, 31-41.
Khazanehdary, L., Zabol Abbasi, F., Ghandehari, Sh., Koohi, M., & Malboosi, Sh. (2009). The pcospect of Iran drought condition in next thirty years. Journal of Geography and Regional Development, 12, 83-99.
Kosgei, J.R., Jewitt, G.P.W., Kongo, V.M., & Lorentz, S.A. (2007). The influence of tillage on field scale water fluxes and maize yields in semi-arid environments: A case study of Potshini catchment, South Africa. Physics and Chemistry of the Earth, 32, 1117-1126.
MajnooniHeris, A., ZandParsa, Sh., Sepaskhah, A.R., & Kamgar Haghighi, A.A. (2007a). Evaluation of MSM model and its application for prediction of water requirement, planting date and forage production of maize. Journal of Crop Production and Processing, 10(3),83-96. (In Persian)
MajnooniHeris A., ZandParsa, Sh., Sepaskhah, A.R., & Kamgar Haghighi A.A. (2007b). Comparison of MSM model for prediction of potential evapotranspiration of maize with FAO methods.Journal of Science and Technology in Agriculture and Natural Resource, 11(41), 29-42. (In Persian)
Ouattar, S., Jones, R.J., Crookston, R.K., & Kajeiou, M. (1987). Effect of drought on water relations of developing maize kernels. Crop Sciences, 27, 730-735.
Sepaskhah, A.R., Azizian, A., & Tavakoli, A.R. (2006). Optimal applied water and nitrogen for winter wheat under variable seasonal rainfall and planting scenarios for consequent crops in a semi-arid region. Agricultural Wtare Management, 84, 113-122.
Sepaskhah, A.R., & Kahjehabdollahi, M.H. (2005). Alternate furrow irrigation with different irrigation intervals for maize. Plant production sciences, 2(5), 592-600.
Sepaskhah, A.R., & Parand, A. (2006). Effect of alternate furrow irrigation with supplemental every furrow irrigation at different growth stages on the yield of maize (Zea mays L.). Plant Production Science, 194, 415-421.
Shahrokhnia, M.H., & Sepaskhah, A.R. (2013). Single and dual crop coefficients and crop evapotranspiration for wheat and maize in a semi-arid region. Theoretical and Applied Climatology, 114, 495-510.
ZandParsa, Sh., & Sepaskhah, A.R. (2001). Optimal applied water and nitrogen for corn. Agricultural Water Management, 52, 73-85.
ZandParsa, Sh., Sepaskhah, A.R., & Rownaghi, A. (2006). Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management, 81, 227-256.
Zhang, J., Sun, J., Duan,A., Wang, J., Xiaojun, Sh., & Liu, X. (2007). Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agricultural Water Management, 92, 41-47.