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 ABSTRACT- Monitoring physiological parameters of plant and fertilizer requirements are 

the basic principles in precision farming. Non-destructive and accurate remote sensors make 

this process feasible and light-handed. The present study evaluates the efficiency of 

GreenSeeker (GS) and Soil-Plant Analyses Development  (SPAD) in Nitrogen (N) fertilizer 

management. Normalized difference vegetation index (NDVI) was measured with GS and 

compared to SPAD. Fertigation with 5 different N treatments was applied to 100 pots. The first 

treatment (N1) had no N concentration, while the other treatments (i.e., N2, N3, N4, and N5) 

received 2, 9, 22, and 37 mmol.L-1 weekly, respectively. Next, the effect of volumetric 

fertilizing was investigated by adding supplemental fertilizer to N1 to N3 pots 71 days after 

planting. Nitrogen concentration in the leaf and first growing fruit was tested using the Kjeldahl 

method. The results of applied sensors confirmed with visible-near infrared spectroscopy at 

200-1100 nm wavelength. NDVI, soil-adjusted vegetation index, and chlorophyll index were 

calculated from the available spectra and compared to the sensor outputs. Strong correlations 

were obtained between NDVI and all indices derived from spectra, especially in the vegetative 

phase. The results showed a strong correlation of NDVI with N rate, especially after 

supplemental fertilizing. Since the vegetation indices from spectra almost correlated well with 

NDVI and SPAD in all treatments, spectroscopy monitoring of cucumber could be a precise 

alternative technique. Linear and nonlinear regressions were applied to model variations of 

NDVI and SPAD. This study demonstrated the feasibility of using GS for N management 

according to its sensitivity to cucumber N status. 

 

INTRODUCTION  

Cucumbers are among the most commonly cultivated 

vegetables worldwide, and nitrogen is one of the most 

important macronutrients for plant growth and 

development. However, excessive nitrogen application 

can cause various negative effects on the growth and 

yield of cucumbers. Therefore, it is important to evaluate 

the impact of nitrogen on the growth stage of cucumbers 

to optimize its use. 

Several studies investigated the impact of nitrogen on 

the growth of cucumbers at different growth stages. In a 

study, researchers evaluated the effects of different 

nitrogen levels (0, 80, 160, and 240 kg ha-1) on the growth 

and yield of cucumber plants at different growth stages 

(vegetative, flowering, and fruit setting). The results 

showed that excessive nitrogen application (240 kg ha-1) 

significantly decreased the yield of cucumber plants 

compared with the control treatment (0 kg ha-1). 

However, the application of 160 kg ha-1 nitrogen resulted 

in the highest yield of cucumber plants, indicating that 

nitrogen application at an appropriate level can promote 

the growth and yield of cucumbers (Padilla et al., 2017). 

Another study evaluated the effects of different nitrogen 

application rates (0, 75, 150, and 225 kg ha-1) on the 

growth and yield of cucumber plants at the flowering and 

fruiting stages. The results showed that nitrogen 

application at a rate of 150 kg ha-1 significantly increased 

the yield of cucumber plants compared with the control 

treatment (0 kg ha-1). Nevertheless, excessive nitrogen 

application (225 kg ha-1) significantly decreased the yield 

of cucumber plants compared with the optimal nitrogen 

treatment (150 kg ha-1) (Basyouni et al., 2015). In 

addition, the impact of nitrogen on the growth of 

cucumbers can also be influenced by other factors such 

as soil type, climate, and management practices. For 

instance, another study found that nitrogen application 

increased the yield of cucumber plants in sandy soil but 

had no significant effect on yield in loamy soil. 

Therefore, the application of nitrogen should be tailored 

to the specific conditions of the cultivation environment 

(Basyouni et al., 2015).  

Nitrogen management is a subject of precision 

agriculture. Potential yield and intensive vegetation 

depend on quantities of N fertilizer. Besides, excess use 

of nitrogen fertilizer causes groundwater contamination 

or N concentration on fruits. In addition, nitrogen 

production factories cause air pollution due to the 

emission of carbon dioxide into the atmosphere (Lemaire 

et al., 2008). Therefore, determination of N requirement 

for growth of crops is necessary and it depends on the 

amount of N soil supply. Monitoring crops, soil, and 

environmental effects allows farmers to control and 

correct N needs continuously (Padilla et al., 2016). 

Remote sensing technology is among the non-

destructive and precise methods to evaluate agricultural 

inputs. CropCircle sensor (Holland Scientific, Lincoln, 
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NE) was applied to measure the canopy reflectance of 

cucumber (Padilla et al., 2017) and muskmelon (Padilla 

et al., 2014) to predict N status. Spectroscopy and digital 

or multispectral cameras were also available and easy 

methods (using different filters) to evaluate the N content 

of plants widely (Baresel et al., 2017; Yang et al., 2008). 

Since chlorophyll is a criterion to show the appropriate 

supply of nitrogen, a chlorophyll meter (Soil-Plant 

Analyses Development,  SPAD) as a reliable sensor was 

applied to estimate leaf greenness and N content of 

different crops, including rice (Larijani and Farokhi-

Teymorlou, 2012), muskmelon (Padilla et al., 2014), and 

maize (Schmidt et al., 2011). Biochemical chlorophyll 

and some vegetation reflectance of lettuce, leaf mustard, 

radish, and cabbage were determined using an atLEAF 

Chlorophyll meter (Ft Green LLC, Wilmington, DE) and 

a miniature leaf spectrometer (Alsina et al., 2016). In 

another study, the nitrogen concentration of potted 

poinsettia was assessed using atLEAF, SPAD, and 

GreenSeeker (GS) (Basyouni et al., 2016). GS sensor was 

used in N evaluation and yield estimation of cereal fields 

such as wheat (Cao et al., 2015), rice (Ali et al., 2014), 

and corn (Sharma et al., 2014, 2016). Such sensors with 

low measurement radia are commonly used in 

greenhouses; besides, monitoring large fields is possible 

with satellite continuously (Wu et al., 2007; Liaqat et al., 

2017). Sensors act in a variety of wavelength ranges and 

measure different indices. Vegetation indices (VIs) are 

valuable parameters to assess physiological parameters, 

especially the N content of crops. The most commonly 

applied index is the normalized difference vegetative 

index (NDVI). This index is very useful for deriving two-

dimensional vegetation parameters, such as the fraction 

of absorbed photosynthetically active radiation and green 

cover percentage (Tucker, 1979). NDVI has been widely 

used because of its strong correlation with the 

physiological and quality parameters of plants (Li et al., 

2013; Meng et al., 2013; Ozdemir, 2014; Yuan et al., 

2014).  

Overall, the impact of nitrogen on the growth of 

cucumbers is complex and can be influenced by various 

factors. Excessive nitrogen application can have negative 

effects on the growth and yield of cucumber plants, while 

an appropriate amount of nitrogen can promote their 

growth and yield. Therefore, it is important to carefully 

evaluate the impact of nitrogen on the growth stage of 

cucumbers and optimize its application to achieve the 

best results. 

The main objectives of this study are three-fold. First, 

it is tried to evaluate the ability of GreenSeeker as a 

portable and non-contact instrument to estimate N 

requirements of greenhouse cucumber. Second, this 

research compares the consistency of NDVI and its 

relationship with SPAD. Third, it suggests the 

sufficiency value of urea fertilizer with less N 

concentration in fruits. 

MATERIALS AND METHODS  

Experimental design 

During the spring of 2017, cucumber crops were 

transplanted in 100 trays filled with original loam soil in 

a plastic greenhouse. After three weeks, the young 

seedlings were planted in bigger pots with 3 kg of soil 

and a layer of gravel underneath each pot for better 

ventilation. The soil composition was examined before 

putting it in pots (Table 1). Pots were placed in an 

experimental polycarbonate greenhouse in five rows, 

with each row representing a treatment. During the 

seedlings transfer, 9 roots and stems of plants were 

damaged such that the fifth treatment had 11 pots. An 

electrical fan and a heater were used as actuators a flap 

roof window for exchanging air and a simple matting 

shade for sunny hours. The greenhouse with southeast 

orientation and 34 47 N and 48 28 E coordination was 

located in the Agricultural Department of Bu-Ali Sina 

University, Hamadan, Iran. 

Table 1. Soil features 

Growth conditions 

In this research, 100 plants of each variety in 5 treatments 

with 20 samples were planted in pots. Then, the 

treatments were separated from each other by receiving 

different percentages of 46% urea fertilizer with weekly 

repetition (Table  2). Gianquinto et al. (2011) and Padilla 

et al. (2014 and 2017) suggested five fertilizer treatments 

in their studies on cucumbers. 

Table 2. Amounts of fertilizer for cucumber 

The deficiency of other elements in the plant was 

prevented using 0.5 g/L of full specialty humic fertilizer 

for all treatments. This fertilizer treatment (i.e., control 

fertilizer) was also used in other studies (Padilla et al., 

2017; Gianquinto et al., 2011). 

Each pot was irrigated 50 mL every day using a crop 

sprayer. Nutrients were supplied to crops by applying 

humic acid to every pot before the urea N treatment 

started. The main contents of humic acid were 10%, 5%, 

4%, and 3% of nitrogen, phosphor, potassium, and sulfur, 

respectively. Four N concentrations (i.e., N2 = 2, N3 = 9, 

N4 = 22, and N5 = 37 mmol.L-1) were applied using urea 

(NH2CONH2) fertigation with 46% nitrogen (N) every 

week and at six replications. There was a very N-

deficient treatment (N1) with no urea fertilizer. Also, 

there were 20 samples in every treatment, except N5 that 

had 11 pots. The NDVI and SPAD measurements were 

applied one week after fertigation. The crop behaviors 

Amount Soil feature 

6.89 pH 
1-ds m 0.2 Electrical conductivity (EC) 
1-mg lit 15 Ca 

1-mg lit 3 Mg 
1-mg lit 35.4 Cl 
1-mg lit 27.89 K 

1-mg lit 2.8 P 
1- lit mg 0.155 N 

Treatment Amount of fertilizer 

noun 1 
1-g lit0.028  2 
1-g lit0.138  3 
1-g lit0.359  4 
1-g lit0.607  5 
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were studied by supplementing the fertilizer with pots in 

the 1st, 2nd, and 3rd treatments. Before determining the 

treatments (especially the control treatment), humic acid 

fertilizer was given to all pots for one week, so that the 

conditions of all the pots were the same. From the second 

week, the control treatment was separated and no more 

nitrogen fertilization was given to this treatment (N1). 

Also, from the 10th day onward, the rest of the pots 

(treatments) received the nitrogen fertilizer. The amount 

of supplemental N was calculated based on receiving 

fertilizer of N5 during the growth (Eq. (1)). 

𝑆𝑢𝑝𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 =
 ∑ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑁 𝑤𝑖𝑡ℎ 𝑁5 − ∑  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑁 𝑤𝑖𝑡ℎ 𝑁𝑖, 𝑖 =
 2, 3, 4  𝐸𝑞. (1) 

Sensors reading 

Vegetation indices were measured one week after 

fertilizing. The first fertigation was 12 days after 

transferring seedlings to an experimental greenhouse 

with a polycarbonate roof and walls. During the first 

week, humic acid was applied and 10 days later the N 

treatment was started. Furthermore, the first 

measurements were 22 days after planting (DAP). 

Afterwards, GS (Trimble Navigation Limited, 

Sunnyvale, California, USA) and SPAD (Minolta 

Camera Co. Ltd., Japan) were applied weekly to each pot. 

The VNIR spectrometer (AvaSpec-ULS 2048- UV-Vis, 

Avente, Netherland) was also used and vegetation indices 

were derived from spectra (Wavelength range was 600-

690 nm). Leaves and fruits’ nitrogen content was 

evaluated with the destructive but trusted experiment of 

Kjeldahl on 78 DAP. This test was performed before and 

after applying the N supplementation to N1, N2, and N3. 

In addition, the number of newly grown leaves was 

calculated every week, before the next fertilization.  

Statistics 

In vegetative and reproductive phases, the correlation of 

GS-NDVI with VNIR-NDVI (Eq. (2)), SPAD, 

Chlorophyll Index-CI (Eq. (3)), and Soil Adjusted 

Vegetation Index-SAVI (Eq. (4)) was determined in all 

available treatments. Besides, effect of N rate variation 

on sensor measurements was evaluated with the interface 

of supplemental fertilizer. To find more accurate 

relationships between SPAD and NDVI measured by GS 

(GS-NDVI) with NDVI derived from spectra (VNIR-

NDVI), another vegetation index (VI) was derived from 

VNIR wavelength bands: VI = NIR/R (Gianquinto et al., 

2011).  

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
, 𝑅 

=  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 600 𝑡𝑜 690 𝑛𝑚  
Eq. (2) 

NDVI: Normalization Different Vegetation Index 

R: Ration 

𝐶𝐼 =  𝑁𝐼𝑅
𝐺⁄ − 1,  

𝐺 =  𝑔𝑟𝑒𝑒𝑛 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ  
Eq. (3) 

CI: Chlorophyll Index 

𝑆𝐴𝑉𝐼 =  1.5 × (
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 − 0.5
)  Eq. (4) 

SAVI: Soil Adjusted Vegetation Index 

Linear, quadratic, cubic (Eq. (5)), and power (Eq. (6)) 

regressions were applied to evaluate the relationships 

between NDVI and SPAD during the growing period. 

Moreover, the multiple regression of SPAD was fitted to 

VIs to validate the model. The coefficient of 

determination (R2) and P-value were calculated to 

measure the accuracy of regression models. 

𝑆𝑃𝐴𝐷 =  𝑎𝑥𝑖 + 𝑏𝑥𝑖
2 + 𝑐𝑥𝑖

3 , 𝑥𝑖  =  𝐺𝑆. 𝑁𝐷𝑉𝐼  Eq. (5) 

𝑆𝑃𝐴𝐷 =  𝑎 × 𝑥𝑏 𝑥 =  𝐺𝑆. 𝑁𝐷𝑉𝐼 Eq. (6) 

a, b, and c are the amounts of chlorophyll. 

Table 3 shows the so-called thematic bands in the 

NASA LANDSAT satellite. The primary function of 

LANDSAT is to obtain and transmit images of the Earth 

from space to monitor the effect of environmental 

conditions on the planet. The bands are expressed in 

terms of wavelength, with 1 μm being equal to 10-6 m. For 

further information about the characteristics and uses of 

each band, see Muñoz-Huerta et al. (2013). 

Table 3. Thematic bands in the NASA LANDSAT satellite 
Band 

No. 

Name Wavelength 

(μm) 

characteristic and 

use 

1 Visible 

blue 

0.45-0.52 Maximum water 

penetration 

2 Visible 

green 

0.52-0.6 Good for 

measuring plant 

vigor 

3 Visible 

red 

0.63-0.69 Vegetation 

discrimination 

4 Near-

infrared 

0.76-0.90 Biomass and 

shoreline mapping 

5 Middle 

infrared 

1.55-1.75 Moisture content of 

soil and vegetation 

6 Thermal 

infrared 

10.4-12.5 Soil moisture; 

thermal mapping 

7 Middle 

infrared 

2.08-2.38 Mineral mapping 

At the end, the correlation coefficient in SPSS 

software was applied to find out whether the 

measurement methods were efficient for the purpose of 

this research. 

Correlation 

Since the control treatment did not receive fertilizer, it is 

necessary to obtain and compare the correlation 

coefficients of the fertilizer content and the NDVI 

reading with the chlorophyll content of treatments 2 to 5. 

RESULTS AND DISCUSSION  

The relationship between N concentration and 

supplemented N 

The average of NDVI and SPAD readings of pots in 

every treatment was ascending up to 43 DAP (Fig. 1). 
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According to Fig. 1a, a sudden decline occurs in NDVI 

after 43 DAP simultaneous as flowering. From 51 DAP, 

the chart returns to the previous state gradually until the 

first fruit grows from 64 to 71 DAP. The same results 

were obtained for NDVI of the fall and spring cucumbers 

(Padilla et al., 2017). A significant increase was observed 

after applying supplemental fertilizer in treatments N1, 

N2, and N3 such that their NDVI almost went beyond N4 

and N5 as nitrogen-rich treatments. This result suggests 

that N addition had a direct impact on the measured 

NDVI of a canopy. There is an obvious difference 

between treatments throughout the crop growth stage. 

Differences observed for nitrogen-rich treatments (i.e., 

N4 and N5) in those NDVI were always greater than 0.4 

during the growth even in reduction periods (flowering 

and reproductive stages).  

The variation of SPAD was almost similar to NDVI 

in the growing stages of cucumber (Fig. 1b). The lowest 

value of SPAD belonged to N1 from 29 to 71 DAP (Fig. 

1b), while it reached the highest point at 78 DAP. There 

was a slight difference between the behavior of GS-

NDVI and SPAD measurements in treatments N1 to N3. 

These treatments showed the minimum value of SPAD 

in 71 DAP, thenceforth increased suddenly by adding 

supplemental fertilizer (78 DAP). Afterwards, SPAD 

values in N1, N2, and N3 reached 60, which exceeded 

those of N4 and N5. The same as GS-NDVI, SPAD 

increased after appending supplemental fertilizer in N1, 

N2, and N3. 

Cucumbers of each treatment were also examined to 

find out the amount of nitrogen accumulation in fruits 

(Fig. 1c and Fig. 1d). Between 5 to 7 pots in every 

treatment fruited around 71 DAP. Results of the Kjeldahl 

test showed N concentration in fruits before 

supplemental fertigation at 71 DAP (Fig. 1c). The 

cucumber from N5 had the maximum N concentration, 

although there was not much difference between N5 and 

N4. Evaluation of fruits one week after supplementation 

(78 DAP) showed incredible results. Compared to the 

gradual fertilizing, receiving the required N entirely 

increased the N content of the fruit suddenly (Fig. 1d). 

The amounts of N concentration in fruits of N2 and N3 

were even higher than N5, as the most rigorous urea-

fertilizer treatment. Fig. 2 presents the relationship 

between GS-NDVI and SPAD during the growth stages 

of cucumbers. 

Fig. 1. Variation of (a) NDVI (Normalization Different Vegetation Index), (b) SPAD (Silicon Photodiode Arrester directly, 

Chlorophyll Meter) from 22 to 78 DAP (Date After Plant) and N rate (Kjeldahl) in cucumbers, (c) before supplemental, and (d) 

after supplemental fertilizer. 

(a) (b) 

 

 

(c) (d) 
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Fig. 2. The relationship between GS-NDVI (GreenSeeker measuring device Normalization Different Vegetation Index( and 

SPAD (Chorolopyll Meter) during the growth stages of cucumbers, (a) to (e) is related to N1 to N5, respectively. 

Fig. 3 and Fig. 4 show the linear regression model. 
Nonlinear models did not indicate this difference 

accurately. The best model for each index was linear and 

in a few cases quadratic using the Akaike Information 

Criterion (AIC, Akaike, 1974). This criterion represents 

the best compromise between the goodness of fit and the 

complexity of a model. 
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Fig. 3. Regression model and correlation of Vegetation index (VI) and NDVI (Normalization Different Vegetation Index). 

 
Fig. 4. Regression model for predicting chlorophyll index (CI) and  Normalization Different Vegetation Index (NDVI) in 

cucumbers. 
 

Effects of N on sensor readings 

Sensors were used from 22 DAP when the crops had 

enough leaves to cover adequately. The correlation of 

GS-NDVI measurement with VNIR-NDVI, SPAD, CI, 

and SAVI was calculated during the growth of 

cucumbers (Table 4). In addition, there was a significant 

correlation between GS-NDVI and SPAD during the 

vegetative period. However, GS-NDVI and SPAD 

showed less correlation in the reproductive stage 

especially in N1, N2, and N3, which received lower N 

fertilizer. According to Table 4, a significant correlation 

in the flowering stage was observed in N4 and N5, while 

it was lower in N1 to N3. This difference can be related 

to the fertilizer richness of N4 and N5. In addition, 

VNIR-NDVI correlated well with GS-NDVI even in the 

reproductive phase. In other words, NDVI shows 

fertilizer poverty of cucumbers in fructiferous. Also, CI 

and SAVI had a significant correlation with NDVI in 

both vegetative and productive stages despite a slight 

decline in the reproductive period. Another result of 

Table 4 was the ascending trend of sensor measurements 

from N1 to N4 and N5.  

To find the effect of N rate, the correlation of NDVI, 

SPAD, and leaf numbers was obtained with N fertilizer 

variation for all treatments (Table 5), except for N1 (since 

it had no fertilizer). Several correlations were obtained 

according to the N rate in available treatments. The 

relationship between N rates and NDVI was highly 

different compared to SPAD. Contrary to SPAD, NDVI 

correlated more significantly with the N rate in all 

treatments. Even though leaf numbers increased by 

increasing fertilizer, supplemental fertilizer had a 

reversed effect on N2 and N3. Gradual fertigation causes 

cucumber with more leaves (correlation with leaf 

numbers increase from 0.766 in N2 to 0.917 in N5). Since 

the pots in treatments N4 and N5 were denser and 

bushier, the correlation of leaf numbers was stronger with 

the N rate compared with N2 and N3. Meanwhile, 

bushier crops would not guarantee whether fertilizer was 

enough. The most independent factor with the N rate was 

SPAD. Moreover, supplemental nitrogen had a great 

effect on the correlation of NDVI and N rate in N2 and 

N3. In other words, the vegetation index depended on the 

fertilizer rate (Basyouni et al., 2015). According to Fig. 



B. Sepehr.                                                                                                                         Iran Agricultural Research 42 (2023) 74-83. 

80 

1 and Table 5, gradual and sudden fertilizer had the same 

effect on the vegetation of cucumber.  

In this study, VI was compared to SPAD and NDVI 

throughout the crop cycle to obtain a precise estimation 

of plant condition (Table 6). VI1, VI2, and VI3 were 

calculated in 560, 660, and 760 nm, respectively 

(Gianquinto et al., 2011). According to Table 5, VIs 

correlated well with sensor reading, especially with both 

calculated NDVIs. Meanwhile, there was not a big 

different correlation between VIs in available treatments, 

except for VI3 with GS-NDVI in N3 (bolded in Table 6). 

Estimating SPAD with vegetation indices 

Polynomial regression with a wide application was used 

to fit vegetation indices (Wang et al., 2017). The first-, 

second-, and third-degree polynomial and exponential 

functions were used to estimate the relationships of GS-

NDVI with SPAD (Table 7). In comparison, linear to 

exponential functions were significant at *P < 0.05 in N1 

to N5. P-values of quadratic and cubic functions were 

low enough (N1, N2, and N3), but they were not always 

significant. In linear, quadratic, and cubic functions, R2 

values of N1 to N5 were almost the same. In contrast, the 

cubic model showed a non-significant P-value (P > 0.1) 

in N3, N4, and N5. Unlike the acceptable R2 value, the 

quadratic model showed significant results with **P < 

0.01 at most treatments. Despite a significant P-value, the 

exponential function was not statistically significant with 

such low R2 values (0.23-0.31). The regression lines of 

different models are displayed in Fig. 2a-e. According to 

Padilla et al. (2016), moderate and low determination 

coefficients could be acceptable. 

 
Table 4. Correlation coefficients of GS-NDVI (GreenSeeker measuring device Normalization Different Vegetation Index( with 

canopy parameters of greenhouse cucumber 

Treatment Vegetative phase  Productive phase 

SPAD VNIR-NDVI CI SAVI  SPAD VNIR-NDVI CI SAVI 

N1 0.797 0.849 0.819 0.981  0.494 0.747 0.651 0.698 

N2 0.829 0.874 0.854 0.865  0.586 0.788 0.683 0.793 

N3 0.853 0.956 0.855 0.867  0.496 0.902 0.553 0.962 

N4 0.996 0.925 0.971 0.940  0.872 0.871 0.799 0.928 

N5 0.993 0.855 0.912 0.922  0.817 0.840 0.885 0.919 

 

Table 5. Correlation coefficients of N-rate with canopy parameters of greenhouse cucumber 

Treatment After supplemental fertilizer  Before supplemental fertilizer 

GS-NDVI VNIR-NDVI SPAD Leaf No.  GS-NDVI VNIR-NDVI SPAD Leaf No. 

N2 0.847 0.934 0.101 0.757  0.423 0.501 0.147 0.766 

N3 0.896 0.951 0.190 0.764  0.529 0.604 0.182 0.867 

N4 -* - - -  0.499 0.617 0.034 0.875 

N5 - - - -  0.473 0.475 0.034 0.917 
* There was no supplemented fertilizer for N4 and N5 

GS-NDVI: GreenSeeker measuring device Normalization Different Vegetation Index 
VNIR-NDVI: wavelength bands of Normalization Different Vegetation Index 

SPAD: Chorolopyll Meter 

 
Table 6. Correlation coefficients between Vis (Vegetation index) and sensor readings 

Parameter Stage N1 N2 N3 N4 N5 

GS-NDVI VI1 0.952 0.993 0.907 0.991 0.998 

VI2 0.891 0.953 0.690 0.881 0.991 

VI3 0.825 0.868 0.414 0.874 0.991 

SPAD VI1 0.865 0.726 0.807 0.849 0.802 

VI2 0.708 0.601 0.804 0.589 0.828 

VI3 0.519 0.660 0.804 0.563 0.779 

VNIR-NDVI VI1 0.968 0.909 0.956 0.905 0.830 

VI2 0.942 0.853 0.756 0.889 0.812 

VI3 0.838 0.864 0.494 0.888 0.826 

GS-NDVI: GreenSeeker measuring device Normalization Different Vegetation Index 

SPAD: Chorolopyll Meter 
VNIR-NDVI: wavelength bands of Normalization Different Vegetation Index 

 

Table 7. R2 values of polynomial models in growth stages 

 Model N1 N2 N3 N4 N5 

R2  Linear 0.58 0.52 0.57 0.54 0.54 

Quadratic 0.66 0.64 0.69 0.56 0.66 

Cubic 0.72 0.68 0.61 0.56 0.66 

Exponential 0.32 0.23 0.28 0.25 0.31 

P-value Linear 8.82e-14*** 2.15e-10*** 5.85e-13*** 1.54e-10*** 1.54e-10*** 

Quadratic 2.20e-16*** 2.66e-10** 4.61e-13* 1.61e-10* 3.33e-08. 

Cubic 2.20e-16*** 2.78e-11** 1.72e-12 6.17e-10 1.58e-07 

Exponential 4.55e-16*** 5.83e-11*** 1.53e-13*** 5.14e-11*** 7.59e-08*** 
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Some multiple regressions were applied to find the 

more accurate relationship between SPAD and VIs and 

leaf number and VIs. The models were evaluated using 

AIC and the best prediction model was defined in each 

treatment. The following four models (Eqs. (7-10)) were 

applied to validate VIs. According to Eqs. (7-10), leaf 

numbers or SPAD could be the successor as Y. AIC 

results showed that the lowest AIC belongs to the model 

in Eq. (9) in all treatments with 8 degrees of freedom. In 

these models, Y was predicted with R2 > 0.93, indicating 

that new growing leaf and SPAD values will be 

determined by knowing VIs. 

𝑌 =  𝑎 + 𝑏1 ∗ 𝑉𝐼1 + 𝑏2 ∗ 𝑉𝐼2 + 𝑏3
∗ 𝑉𝐼3 

Eq. (7) 

𝑌 =  𝑎 + 𝑏1 ∗ 𝑉𝐼1 + 𝑏2 ∗ 𝑉𝐼2 + 𝑏3
∗ 𝑉𝐼3 + 𝑏4 ∗ 𝑉𝐼1 ∗ 𝑉𝐼
+ 𝑏5 ∗ 𝑉𝐼1 ∗ 𝑉𝐼3
+ 𝑏6 ∗ 𝑉𝐼2 ∗ 𝑉𝐼3
+ 𝑏7 ∗ 𝑉𝐼1 ∗ 𝑉𝐼2
∗ 𝑉𝐼3 

Eq. (8) 

𝑌 =  𝑎 + 𝑏1 ∗ 𝑉𝐼1 + 𝑏2 ∗ 𝑉𝐼2 + 𝑏3
∗ 𝑉𝐼3 + 𝑏4 ∗ 𝑉𝐼1
∗ 𝑉𝐼2 + 𝑏5 ∗ 𝑉𝐼1
∗ 𝑉𝐼3 + 𝑏6 ∗ 𝑉𝐼2
∗ 𝑉𝐼3 

Eq. (9) 

𝑌 =  𝑏1 ∗ 𝑉𝐼1 + 𝑏2 ∗ 𝑉𝐼2 + 𝑏3 ∗ 𝑉𝐼3 Eq. (10) 

On days 78 and 57, cucumber leaves were subjected to 

spectrometry by AvaSpec-ULS 2048-UV-Vis 

spectrometer (Avante Co. Nrtherland & Perkin Elmer, 

USA) in the spectral range of 200 to 1100 nm. The 

accuracy of Greenseeker and Spad sensors was evaluated 

by extracting NDVI and CI from the spectrum, 

respectively. Fig. 4 shows the linear regression model for 

predicting NDVI and chlorophyll of cucumber. Since the 

R2 obtained in all cases was higher than 70%, the 

accuracy of GS and SPAD was confirmed as non-

destructive methods in measuring the greenness of 

greenhouse cucumbers. 

CONCLUSION  

In this research, NDVI and chlorophyll data were 

collected in two stages without fertilization, one stage for 

control fertilizer, one stage for humic acid fertilizer, four 

stages for application of fertilizer program, and one stage 

for treatment fertilizer at a time interval of 7 days for 

cucumbers. The data collection interval of 7 days was 

considered as this interval shows the highest 

performance. Due to the same amount of soil nitrogen in 

all treatments, a control fertilizer step was applied to all 

treatments of cucumber to make the nitrogen of the plants 

the same. Due to the low amount of control fertilizer, 

NDVI changes occurred at the same level. Humic acid 

fertilizer was used to meet the plant’s need for other 

nutrients. The reason for the changes in the NDVI index 

at the time of humic acid fertilizer application was the 

presence of 10% nitrogen in this fertilizer. The NDVI 

index had an ascending trend until the third stage of data 

collection when implementing the experiment and 

applying nitrogen fertilizer. In the fourth stage of 

applying nitrogen fertilizer, the NDVI reading declined 

due to the plant fertilization and nitrogen saturation in the 

plant. The reason for the decrease in the diagram is 

nitrogen saturation in the plant. In the fifth stage of data 

collection, fertilizers were applied in treatments N1 to 

N3. 

Nitrogen is one of the essential macronutrients required 

by plants for their growth and development. Cucumbers, 

like other plants, require nitrogen for their vegetative 

growth, chlorophyll synthesis, and protein formation. 

However, the impact of nitrogen on the growth stage of 

cucumber plants can be both positive and negative, 

depending on the amount and timing of application. The 

positive impacts of nitrogen on cucumber growth can be 

summarized:  

• Increased leaf and stem growth: Nitrogen is a primary 

constituent of chlorophyll. This green pigment in plants 

enables them to photosynthesize. When cucumbers 

receive adequate nitrogen, they produce more 

chlorophyll, leading to more leaf and stem growth. 

•  Improved fruit yield and quality: Nitrogen is essential 

for synthesis of protein and proteins, as the building 

blocks of fruits and vegetables.  

• Adequate nitrogen supply can enhance cucumber fruit 

yield and quality. Earlier maturity: nitrogen application 

can accelerate cucumber plant development, resulting in 

earlier maturity and harvest.  

On the other hand, the negative impacts of nitrogen 

on cucumber growth are as follows: 

• Delayed fruit formation: Excessive nitrogen 

application can delay cucumber fruit formation, resulting 

in reduced fruit yield.  

• Reduced fruit quality: Excessive concentration of 

nitrogen can also affect cucumber fruit quality, making 

them softer and more prone to disease and pest 

infestation.  

• Susceptibility to environmental stress: Cucumbers with 

an excess of nitrogen are more susceptible to 

environmental stress, such as drought and temperature 

extremes.  

In conclusion, although nitrogen is essential for the 

growth and development of cucumber plants, it should be 

applied judiciously to avoid negative impacts on fruit 

yield and quality. Cucumber growers should supply 

carefully their plants with the appropriate amounts of 

nitrogen at the right time, depending on the specific 

growth stage of the plant. 

According to the results of this study, NDVI is a 

potential vegetation index for monitoring N requirements 

of greenhouse cucumber. GS showed accurate results 

compared to SPAD, especially after the vegetation phase. 

When pots had a green dense canopy, GS would have 

accurate performance, while SPAD was useful from the 

first growing leaf. Spectroscopy provided more accurate 

results at the early stage of the growing phase compared 

to GS and SPAD. A linear model could be efficient 

enough to find the relationship between the sensor 

readings. It is suggested to do the same study with a 

portable spectrometer with a wide range of wavelengths 

to support the results of these optical sensors. 
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