ارزیابی اثرات نیتروژن بر مراحل رشد خیار

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی بیوسیستم، دانشگاه بوعلی سینا، همدان، ج. ا. ایران

چکیده

بررسی پارامترهای فیزیولوژیکی گیاه و کود موردنیاز از اصول اساسی در کشاورزی دقیق است. سنسورهای غیر مخرب و دقیق از راه دور این فرآیند را امکان‌پذیر می‌کنند. مطالعه حاضر کارایی دو دستگاه GreenSeeker (GS) و توسعه تجزیه‌وتحلیل خاک-گیاه (SPAD) Soil-Plant Analysis Development را در مدیریت کود نیتروژن (N) ارزیابی می‌کند. شاخص نرمال شده تفاوت گیاهی (NDVI) با GS اندازه‌گیری و با SPAD مقایسه شد. کود دهی با 5 تیمار مختلف نیتروژن در 100 گلدان اعمال شد. تیمار اول (N1) غلظت نیتروژن نداشت، درحالی‌که تیمارهای دیگر (یعنی N2، N3، N4 و N5) به ترتیب 2، 9، 22 و 37 میلی مول در لیتر در هر هفته دریافت کردند. سپس اثر کود دهی حجمی با افزودن کود مکمل به گلدان‌های N1 تا N3، 71 روز پس از کاشت بررسی شد. غلظت نیتروژن در برگ و میوه در حال رشد با استفاده از روش کجلدال مورد آزمایش قرار گرفت. نتایج حسگرهای اعمال‌شده با طیف‌سنجی مادون‌قرمز در طول‌موج 200-1100 نانومتر تأیید شد. NDVI، شاخص پوشش گیاهی با خاک و شاخص کلروفیل از طیف‌های موجود محاسبه و با خروجی‌های حسگر مقایسه شد. همبستگی قوی بین NDVI و تمام شاخص‌های مشتق شده از طیف، به‌خصوص در فاز رویشی به دست آمد. نتایج، همبستگی قوی NDVI با میزان نیتروژن، به‌ویژه پس از کود دهی تکمیلی را نشان داد. ازآنجایی‌که شاخص‌های پوشش گیاهی از طیف تقریباً به‌خوبی با NDVI و SPAD در تمام تیمارها همبستگی دارند، نظارت طیف‌سنجی از راه دور خیار می‌تواند یک تکنیک جایگزین دقیق­تر باشد. رگرسیون خطی و غیرخطی برای تغییرات مدل NDVI و SPAD اعمال شد. این مطالعه امکان استفاده از GS را برای مدیریت N با توجه به حساسیت آن به وضعیت نیتروژن خیار نشان داد.

کلیدواژه‌ها

موضوعات


Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19 (6), 716–723. https://doi.org/10.1109/TAC.1974.1100705
Ali, A. H., Thind, S., & Sharma, H. (2014). Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart, and GreenSeeker optical sensor in north-western India. Field Crops Research, 161, 11-15. https://doi.org/10.1016/j.fcr.2014.03.001
Alsina, I., Duma, M., Dubova, L., & Dagis, S. (2016). Comparison of different chlorophylls determination methods for leafy vegetables. Agronomy Research, 14(2), 309-316.
Baresel, J. P., Rischbeck, P., Hu, Y., Kipp, S., Barmeier, G., Mistele, B., & Schmidhalter, U. (2017). Use of a digital camera as an alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat. Computers and Electronics in Agriculture140, 25-33. https://doi.org/10.1016/j.compag.2017.05.032
Basyouni, R., Dunn, B., & Goad, C. (2015). Use of non-destructive sensors to assess nitrogen status in potted poinsettia (Euphorbia pulcherrima L. (Wild. ex Klotzsch)) production. Scientia Horticulturae-Amsterdam, 192, 47-53. https://doi.org/10.1016/j.scienta.2015.05.011
Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., Yue, S., Cheng, S., Ustin, S. L., & Khosla, R. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54-67. https://doi.org/10.1016/j.compag.2014.08.012
Gianquinto, G., Orsini, F., Fecondini, M., Mezzetti, M., Sambo, P., & Bona, S. (2011). A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. European Journal of Agronomy35(3), 135-143. https://doi.org/10.1016/j.eja.2011.05.005
Larijani, M., Farokhi-Teymorlou, R. (2012). Evaluation of image processing technique in estimation of nitrogen and plant yield and comparison with conventional methods. Agricultural Machinery, 1(2), 84-91.
Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614-624. https://doi.org/10.1016/j.eja.2008.01.005
Li, M., Im, J., & Beier, C. (2013). Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over huntington wildlife forest. GIScience and Remote Sensing, 50(4), 361–384. https://doi.org/10.1080/15481603.2013.819161
Liaqat, M. U., Cheema, M. J. M., Huang, W., Mahmood, T., Zaman, M., & Khan, M. M. (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture138, 39-47. https://doi.org/10.1016/j.compag.2017.04.006
Meng, Q., Cooke, W., & Rodgers, J. (2013). Derivation of 16-day time-series NDVI data for environmental studies using a data assimilation approach. GIScience Remote Sensing, 50(5), 500–514. https://doi.org/10.1080/15481603.2013.823733
Muñoz-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., Torres-Pacheco, I., Prado-Olivarez, J., & Ocampo-Velazquez, R.V. (2013). A review of methods for sensing the nitrogen status in plants. advantages, disadvantages and recent advances. Sensors, 13(8), 10823-43. https://doi.org/10.3390/s130810823
Ozdemir, I. (2014). Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using Rapid Eye data. GIScience and Remote Sensing, 51(3), 288–300. https://doi.org/10.1080/15481603.2014.912876
Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2014). Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European Journal of Agronomy, 58, 39-52. https://doi.org/10.1016/j.eja.2014.04.006
Padilla, F. M., Pe˜na-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2016). Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. European Journal of Agronomy, 73, 83–97. https://doi.org/10.3390/s18072083
Padilla, F. M., Pe˜na-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2017). Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. European Journal of Agronomy, 84, 1-15. https://doi.org/10.1016/J.EJA.2016.12.007
Schmidt, J., Beegle, D., Zhu, Q., & Sripada, R. (2011). Improving in-season nitrogen recommendations for maize using an active sensor. Field Crops Research, 120, 94-101. https://doi.org/10.1016/j.fcr.2010.09.005
Sharma, L. K., Bu, H., & Franzen, D. W. (2014). Comparison of two ground-based active-optical sensors for in-season estimation of corn (Zea mays, L.) yield. Journal of Plant Nutrition, 39(7), 957-966. https://doi.org/10.1080/01904167.2015.1109109
Sharma, L. K., Bu, H., Franzen, D. W., & Denton, A. (2016). Use of corn height measured with an acoustic sensor improves yield estimation with ground-based active optical sensors. Computers and Electronics in Agriculture, 124, 254-262. https://doi.org/10.1016/j.compag.2016.04.016
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
Wang, L., Zhou, X., Zhu, X., & Guo, D.W. (2017). Estimated of leaf nitrogen concentration in wheat using MK-SVR algorithm and satellite remote sensing data. Computers and Electronics in Agriculture, 140, 327-337. https://doi.org/10.1016/j.compag.2017.05.023
Wu, J., Wang, D., Rosen, C. J., & Bauer, M. E. (2007). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 101, 96–103. https://doi.org/10.1016/j.fcr.2006.09.014
Yang, C. M., Liu, C. C., & Wang, Y. W. (2008). Using Formosat-2 satellite data to estimate leaf area index of rice crop. Journal of Photogrammetry and Remote Sensing, 13(4), 253–260. https://doi.org/10.6574/JPRS.2008.13(4).3
Yuan, F., Wang, C., & Mitchell, M. (2014). Spatial patterns of land surface phenology relative to monthly climate variations: US Great Plains. GIScience and Remote Sensing, 51(1), 30–50. https://doi.org/10.1080/15481603.2014.883210