ارزیابی عملکرد تغذیه مصنوعی در یک سیل تاریخی در جنوب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، شیراز، ج. ا. ایران

10.22099/iar.2023.46521.1522

چکیده

بحران آب چالش بزرگی برای مدیران منابع آب در مناطق نیمه خشک ایران است. بیشتر سیاست‌ها برای مقابله با این بحران، مهار آب‌های سطحی پشت سدها بوده است. تغییر رویکرد ملی از سدسازی به آبخیزداری برای حفظ منابع آب‌های زیرزمینی ایران اجتناب ناپذیر است. تأثیر پخش سیلاب و تغذیه مصنوعی آب‌های زیرزمینی در منطقه وسیعی در جنوب ایران طی 151 ساعت سیل تاریخی در سال 1395 بررسی شد. منطقه مورد مطالعه دو حوضه در دشت گره بایگان شامل حوضه بیشه زرد (192 کیلومتر مربع) و حوضه چاه قوچ (171 کیلومتر مربع) بود. معادله بودجه آب برای ارزیابی آب ورودی و خروجی سیستم پخش سیلاب استفاده شد. شش پیزومتر نصب شده در دشت گره بایگان، سطح رکود آب را اندازه گیری کردند. جریان ورودی و خروجی به ترتیب با یک ثبات سطح آب و پنج سرریز تاج پهن اندازه گیری شدند. محتوای آب خاک تا عمق 30 متری توسط سنسورهای دستگاه رطوبت سنج براساس بازتاب سنجی دامنه زمانی (Time Domain Reflectometry, TDR) ثبت شد. حجم کل آب حفظ شده توسط سیستم در 29 بهمن 1395، 19160951 متر مکعب بود. تغذیه خالص آبخوان 6677301 مترمکعب بود. کل تغذیه ناشی از تغذیه مصنوعی در مدت مطالعه 8332916 متر مکعب بود. سیستم پخش سیلاب، 70 درصد سیلاب انحرافی را مهار نمود و سطح آب چاه‌های منطقه را از1/03 تا 2/74 متر بالا برد. بنابراین میتوان نتیچه گیری کرد که پخش سیلاب و تغذیه مصنوعی، رویداد سیل نادر در ایران را مهار کردند. در نتیجه، آنها می توانند فرآیندهای منطقی برای جلوگیری از خسارات سیل و حفظ منابع آب‌های زیرزمینی باشند.

کلیدواژه‌ها


Ali, M. H., & Mubarak S. (2017). Effective rainfall calculation methods for field crops: An overview, analysis and new formulation. Asian Research Journal of Agriculture, 7(1):1-12. DOI:10.9734/ARJA/2017/36812

Barquero, F., Fichtner, T., & Stefan, C. (2019). Methods of in situ assessment of infiltration rate reduction in groundwater recharge basins. Water, 11(4), 784 (1-12). https://doi.org/10.3390/w11040784.
Bouwer, H. (1986). Intake rate: Cylinder infiltrometer. In Klute, A. (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods (pp. 825-844). Madison WI: American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c32,
Elrick, D. E., & Reynolds, W. D. (1992). Infiltration from constant-head well permeameters and infiltrometers. In Topp, G C., Reynolds, W. D., Green, R. E., (Eds). Advances in measurement of soil physical properties: Bringing theory into practice. (pp. 1-24). USA, Madison: The Soil Science Society of America, Inc. DOI:10.2136/sssaspecpub30
Ganot, Y., Holtzman, R., Weisbrod, N., Nitzan, I., Katz, Y., & Kurtzman, D. (2017). Monitoring and modeling infiltration–recharge dynamics of managed aquifer recharge with desalinated seawater. Hydrology and Earth System Sciences, 21(9), 4479-4493. DOI:10.5194/hess-21-4479-2017
Ghahari, G., Hashemi, H., & Berndtsson, R. (2014). Spate irrigation of barley through floodwater harvesting in the Gareh-bygone plain, IRAN. Irriagation and Drainage, 63(5), 599-611. DOI:10.1002/ird.1855.
Ghahari, G., & Mesbah, S. H. (2018). The effect of exceptional flood in February 2017 on artificial recharge of aquifer in Gareh Bygone Fasa flood water spreading system, Iranian Journal of Rainwater Catchment Systems, 5, 39-50. (In Persian).
Hashemi H. (2014). Floodwater harvesting for artificial recharge of groundwater-estimation and prediction for arid Iran. (Doctoral dissertation, Lund University, Sweden).
Hashemi, H., Berndtsson, R., & Kompani-Zare, M. (2012). Steady-State unconfined aquifer simulation of the Gareh-Bygone plain, Iran. The Open Hydrology Journal, 6 (Suppl 1-M4), 58-67. DOI:10.2174/1874378101206010058.
Hashemi, H., Uvo, C. B., & Berndtsson, R. (2014). An extended modeling approach to assess climate change impacts on groundwater recharge and adaptation in arid areas. Hydrology and Earth System Sciences Discussions, 11, 11797–11835. DOI:10.5194/hessd-11-11797-2014.Hendrickx, J. M. H., Khan, A. S., Bannink, M. H., Birch, D., & Kidd, C. (1991). Numerical analysis of groundwater recharge through stony soils using limited data. Journal of Hydrology, 127 (1–4), 173–192. . DOI: 10.1016/0022-1694(91)90114-W.
Hoque, M. A., Hoque, M. M., & Ahmed, K. M. (2007). Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeology Journal, 15(8), 1523-1534. DOI:10.1007/s10040-007-0226-5.
Jafari, H., Raeisi, E., Zare, M., & Kamgar Haghighi, A. A. (2012). Time series analysis of irrigation return flow in a semi-arid agricultural region, Iran. Archives of Agronomy and Soil Science, 58(6), 673–689. DOI: 10.1080/03650340.2010.535204.
Kowsar, S. A. (1991). Floodwater spreading for desertification control: An integrated approach. Desrtification Control Bulliten, 19, 3-18.
Kowsar, S. A. )2005(. Abkhandari (Aquifer management): A green path to the sustainable development of marginal Drylands. Journal of Mountain Science, 2 (3), 233–243. DOI:10.1007/bf02973197
Kowsar, S. A. (2008). Gareh Bygone plain, Islamic Republic of Iran. In Lee, C., Schaaf, T. (Eds).  Sustainable management of marginal drylands: Using science to promote sustainable development, SUMAMAD project findings from North Africa to Asia. (pp. 105-125) France, Paris: UNESCO-MAB, SUMAMAD.
Mesbah, H., Mohammadnia, M., & Kowsar, S. A. )2016(. Long-term improvement of agricultural vegetation by floodwater spreading in the Gareh Bygone Plain, Iran. In the pursuit of human security, is artificial recharge of groundwater more lucrative than selling oil? Hydrogeology Journal, 24(2), 303-317. DOI:10.1007/s10040-015-1354-y
Pakparvar, M. (2015). Evaluation of floodwater spreading for groundwater recharge in Gareh Bygone Plain, southern Iran. (Doctoral dissertation, Ghent University, Ghent, Belgium).
Pakparvar, M., Hashemi, M., Rezaei, M., Cornelis, W.M., Nekooeian, G. R., & Kowsar, S.A. (2018). Artificial recharge efficiency assessment by soil water balance and modelling approaches in a multi-layered vadose zone in a dry region. Hydrological Sciences Journal, 63(8), 1-20. DOI:10.1080/02626667.2018.1481962
Pakparvar, M., Kristine, W., Cheraghi, S. A. M., Ghahari, G., & Cornelis, W. (2016) Assessment of groundwater recharge influenced by floodwater spreading: an integrated approach with limited accessible data. Journal of Hydrological Sciences, 62 (1), 147-164. DOI:10.1061/(ASCE)HE.1943-5584.0001909
Pakparvar, M., Walraevens, K., Cheraghi, G. R., Cornelis, W. M., Gabriels, D., & Kowsar, S. A. (2017). Assessment of groundwater recharge influenced by floodwater spreading: An integrated approach with limited accessible data. Hydrological Sciences Journal,62(1), 147-164. DOI:10.1080/02626667.2016.1183164Radcliffe, D. E., & Ŝimùnek, J. (2010). Soil physics with Hydrus modeling and application. Boca Raton: CRC Press.
Rahnemaei, M., Boustani, F., & Kowsar, S. A. (2013). Achieving ground water sustainability in Iran through qanat rejuvenation. Hydrology Current Research, 4, 1-9. DOI: 10.4172/2157-7587.1000150
Sabol, G., Bouwer, H., & Wierenga, P. (1987). Irrigation effects in Arizona and New Mexico. Journal of Irrigation and Drainage Engineering, 113(1), 30–48. https://doi.org/10.1061/(ASCE)0733-9437(1987)113:1(30
Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18-39. https://doi.org/10.1007/s10040-001-0176-2
Souza, E. D., Pontes, L. M., Fernandes Filho, E. I., Schaefer, C. E. G. R., & Santos, E. E. D. (2019). spatial and temporal potential groundwater recharge: The case of the Doce river basin, Brazil. Revista Brasileira de Ciência do Solo 43 (e0180010), 1-27.
Stako, S., Tarka, R., & Olichwer, T. (2012). Groundwater recharge evaluation based on the infiltration method. In  Maloszewski, P.,  Witczak, S., and Malina, G. (Eds). Groundwater quality sustainability (pp 189-197) London: Taylor and Francis Group. CRC Press. DOI: 10.1201/b12715-19