Ahn, J. Y., Kil, D. Y., Kong, C., & Kim, B. G. (2014). Comparison of oven-drying methods for determination of moisture content in feed ingredients. Asian-Australasian Journal of Animal Sciences, 27(11), 1615–1622.
https://doi.org/10.5713/ajas.2014.14305
Astuti, D., Suhartanto, B., Umami, N., & Irawan, A. (2019). Productivity, nutrient composition, and hydrocyanic acid concentration of Super-2 Forage Sorghum at different NPK levels and planting spaces. Tropical Animal Science Journal, 42(3), 189–195. https://doi.org/10.5398/tasj.2019.42.3.189
Ates, E., Tenikecier, H. S., & Faculty, A. (2019). Hydrocyanic Acid Content , Forage Yield and Some Quality Features of Two Sorghum-Sudan Grass Hybrid Cultivars Under Different Nitrogen Doses in Thrace , Turkey. Current Trends in Natural Sciences, 8(16), 55–62.
Bahrani, M. J., & Deghani Ghenateghestani, A. (2004). Summer Forage Sorghum Yield, Protein and Prussic Acid Contents as Affected by Plant Density and Nitrogen Topdressing. Journal of Agricultural Science and Technology, 6, 73–83.
Ćupina, B., Manojlović, M., Krstić, D., Čabilovski, R., Mikić, A., Ignjatović-Ćupina, A., & Erić, P. (2011). Effect of winter cover crops on the dynamics of soil mineral nitrogen and yield and quality of Sudan grass [Sorghum bicolor (L.) Moench]. Australian Journal of Crop Science, 5(7), 839–845.
Dewi, M. P., Umami, N., & Suhartanto, B. (2019). The Effect of Variety and Harvesting Time of Sorghum Planted in Stylosanthes Pasture on Growth, Production and Prussic Acid Content. Buletin Peternakan, 43(3), 166–170. https://doi.org/10.21059/buletinpeternak.v43i3.39759
Getachew, G., Putnam, D. H., De Ben, C. M., & De Peters, E. J. (2016). Potential of Sorghum as an Alternative to Corn Forage. American Journal of Plant Sciences, 07(07), 1106–1121. https://doi.org/10.4236/ajps.2016.77106
Gholami, H., Khazaei, A., Golzardi, F., & Amirsadeghi, M. (2023). Evaluation of forage yield and quality in the local and foreign cultivars, lines, and hybrids of forage sorghum [Sorghum bicolor (L.) Moench]. Journal of Animal Science Research, Article in Press. https://doi.org/10.22034/AS.2021.13882
Haskins, F. A., Gorz, H. J., Hill, R. ., & Youngquist, J. B. (1984). Influence of Sample Treatment on Apparent Hydrocyanic Acid Potential of Sorghum Leaf Tissue. Crop Science, 24(6), 1158–1163.
Holman, J. D., Obour, A. K., & Mengel, D. B. (2019). Nitrogen application effects on forage sorghum production and nitrate concentration. Journal of Plant Nutrition, 42(20), 2794–2804. https://doi.org/10.1080/01904167.2019.1659321
Machicek, J. A., Blaser, B. C., Darapuneni, M., & Rhoades, M. B. (2019). Harvesting Regimes Affect Brown Midrib Sorghum-Sudangrass and Brown Midrib Pearl Millet Forage Production and Quality. Agronomy, 9(416), 1–13. https://doi.org/10.3390/agronomy9080416
Mahfouz, H., Mohamed Ali, A. M., Megawer, E. A., & Mahmoud, A. S. (2015). Response of Growth Parameters , Forage Quality and Yield of Dual-Purpose Sorghum to Re-Growth and Different Levels of FYM and N Fertilizers in New Reclaimed Soil. International Journal of Current Microbiology and Applied Sciences, 4(11), 762–782.
Mir, S. A. (2009). Extraction of NOx and determination of nitrate by acid reduction in water, soil, excreta, feed, vegetables and plant materials. Journal of Applied Sciences and Environmental Management, 13(3), 57–63.
https://doi.org/10.4314/jasem.v13i3.55365
Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Møller, B. L., & Gleadow, R. M. (2015). Utilization of a high-throughput shoot imaging system to examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and water deficiency over time. Journal of Experimental Botany, 66(7), 1817–1832. https://doi.org/10.1093/jxb/eru526
Nielsen, K. A., Tattersall, D. B., Jones, P. R., & Møller, B. L. (2008). Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69(1), 88–98. https://doi.org/10.1016/j.phytochem.2007.06.033
Ogbaga, C. C., Stepien, P., Dyson, B. C., Rattray, N. J. W., Ellis, D. I., Goodacre, R., & Johnson, G. N. (2016). Biochemical analyses of sorghum varieties reveal differential responses to drought. PLOS ONE, 11(5), 1–20.
https://doi.org/10.1371/journal.pone.0154423
Patel, P. A. S., Alagundagi, S. C., & Salakinkop, S. R. (2013). The anti-nutritional factors in forages - A review. Current Biotica, 6(4), 516–526.
Rajasokkappan, S., Rajan, T., & Raghavendran, V. B. (2020). Sorghum poisoning in a cow and it’s successful management. The Pharma Innovation Journal, 9(7), 164–165.
https://doi.org/10.22271/tpi.2020.v9.i7Sc.4956
Shehab, A. A., Yao, L., Wei, L., Wang, D., Li, Y., Zhang, X., & Guo, Y. (2020). The increased hydrocyanic acid in drought-stressed sorghums could be alleviated by plant growth regulators. Crop and Pasture Science, 71(5), 459–468. https://doi.org/10.1071/CP20057
Sher, A., Ansar, M., Manaf, A., Qayyum, A., Saeed, M. F., & Irfan, M. (2014). Hydrocyanic acid and sugar content dynamics under nitrogen and sulphur application to forage sorghum cultivars. Turkish Journal of Field Crops, 19(1), 46–52. https://doi.org/10.17557/tjfc.82278
Sowiński, J., & Głąb, L. (2018). The effect of nitrogen fertilization management on yield and nitrate contents in sorghum biomass and bagasse. Field Crops Research, 227, 132–143.
https://doi.org/10.1016/j.fcr.2018.08.006
Staggenborg, S. (2019). Forage and renewable sorghum end uses. In Ciampitti I. A., Vara Prasad P. V. (Eds.), Sorghum: A state of the Art and future perspetives, Vol. 58. Chapter 20.
Vinutha, K. S., Anil Kumar, G. S., Blümmel, M., & Srinivasa Rao, P. (2017). Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines. Tropical Grasslands-Forrajes Tropicales, 5(1), 40–49.
https://doi.org/10.17138/TGFT(5)40-49