پارامترهای فیزیولوژیکی باقلا کشت شده در شرایط شوری، کم آبیاری و بیوچار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران

2 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران و مرکز تحقیقات خشکسالی، دانشگاه شیراز، شیراز، جمهوری اسلامی ایران، ج.ا. ایران

چکیده

تنش‌‌های شوری و آبی و همچنین خاک‌های با حاصلخیزی کم از محدودیت‌های اصلی در تولید محصولات کشاورزی ایران هستند. هدف از این مطالعه بررسی کاربرد بیوچار کاه و کلش گندم (با شوری 9/3 دسی زیمنس بر متر) بر بهبود ویژگی‌های فیزیولوژیکی و رشد باقلا در شرایط گلخانه بود. از این رو، سه سطح بیوچار (صفر، 1/25 و 2/50 درصد وزنی)، سطوح آبیاری (50، 75 و 100 درصد نیاز آبی گیاه) و شوری آب آبیاری (0/6، 4 و 8 دسی زیمنس بر متر) به صورت آزمایش فاکتوریل و در قالب طرح کامل تصادفی با چهار تکرار اعمال شد. کاربرد 2/5 درصد وزنی بیوچار با شوری 0/6 دسی زیمنس بر متر و 50 درصد کم آبیاری به ترتیب باعث افزایش معنی‌دار ارتفاع ، شاخص سطح برگ و هدایت روزنه‌ای به مقدار 12، 20 و 11 درصد و کاهش 3 درصدی دمای برگ در مقایسه با عدم کاربرد بیوچار شد. افزودن 5/2 درصد وزنی بیوچار همراه با آب شور 8 دسی زیمنس بر متر و 50 درصد کم آبیاری به طور معنی‌داری ارتفاع محصول و هدایت روزنه‌ای را به مقدار 21 و 29 درصد در مقایسه با بدون استفاده از بیوچار و با آب شور 8 دسی زیمنس بر متر و 50 درصد کم آبیاری کاهش داد. همچنین کاربرد 2/5 درصد وزنی بیوچار همراه با 0/6 دسی زیمنس بر متر آب شور و 100 درصد آب آبیاری منجر به حداکثر عملکرد دانه تازه و وزن خشک 100 دانه شد. در نتیجه، استفاده از بیوچار 5/2 درصد وزنی با هدایت الکتریکی بالا برای باقلا در شرایط شور در هیچ سطح آب آبیاری مناسب نبود.

کلیدواژه‌ها


Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. )2017(. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24, 12700–12712. https://doi.org/10.1007/s11356-017-8904-x
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201, 368–378. https://doi.org/10.1111/jac.12132
Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37–44. https://doi.org/10.1016/j.agwat.2014.02.016
Alizadeh-Choobari, O., & Najafi, M. S. (2018). Extreme weather events in Iran under a changing climate. Climate Dynamics, 50, 249–260. https://doi.org/10.1007/s00382-017-3602-4
Baronti, S., Vaccari, F. P., Miglietta, F., Calzolari, C., Lugato, E., Orlandini, S., Pini, R., Zulian, C., & Genesio, L. (2014). Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy, 53, 38–44. https://doi.org/10.1016/j.eja.2013.11.003
Batool, A., Taj, S., Rashid, A., Khalid, A., Qadeer, S., Saleem, A. R., & Ghufran, M. A. (2015). Potential of soil amendments (biochar and gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science, 6, 1–13. https://doi.org/10.3389/fpls.2015.00733
Duc, G., Bao, S., Baum, M., Redden, B., Sadiki, M., Suso, M. J., Vishniakova, M., & Zong, X. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research, 115, 270–278. https://doi.org/10.1016/j.fcr.2008.10.003
FAOSTAT, (2017). Food and Agriculture Organization of the United Nations, Rome, Italy. Retrieved from: http://www.fao.org/faostat/en/#data/QC.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212. https://doi.org/10.1051/agro:2008021
Glenn, E. P., & Brown, J. J. (1998). Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. American Journal of Botany, 85, 10–16. https://doi.org/10.2307/2446548
Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., & Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) Merr. Under drought stress. Pakistan Journal of Botany, 49(51), 7-13.
Haider, G., Koyro, H. W., Azam, F., Steffens, D., Müller, C., & Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395, 141–157. https://doi.org/10.1007/s11104-014-2294-3
Huang, M., Zhang, Z., Zhai, Y., Lu, P., & Zhu, C. (2019). Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy, 9, 457. https://doi.org/10.1007/s11104-014-2294-3
Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R., & Panneerselvam, R. (2009). Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105.
Kazemi, H., Sadeghi, S., & Akinci, H. (2016). Developing a land evaluation model for faba bean cultivation using geographic information system and multi-criteria analysis (A case study: Gonbad-Kavous region, Iran). Ecological Indicators, 63, 37-47. https://doi.org/10.1016/j.ecolind.2015.11.021
Khan, H. R., Paull, J. G., Siddique, K. H. M., & Stoddard, F. L. (2010). Faba bean breeding for drought tolerance: A physiological and agronomic perspective. Field Crops Research, 115, 279–86. https://doi.org/10.1016/j.fcr.2009.09.003
Kramer, P. J. (1983). Water relations of plants (1st ed.). New York: Academic Press.
Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., Zheng, J., & Pan, G. (2015). Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. Journal of the Science of Food and Agriculture, 95, 1321–1327.
https://doi.org/10.1002/jsfa.6825
Lehmann, J. (2007). A handful of carbon. Nature, 447, 143. https://doi.org/10.1038/447143a
Loss, S. P., & Siddique, K. H. M. (1997). Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments I. Seed yield and yield components. Field Crops Research, 52, 17–28. https://doi.org/10.1016/S0378-4290(96)03455-7
Luo, H. H., Tao, X. P., Hu, Y. Y., Zhang, Y. L., & Zhang, W. F. (2015). Response of cotton root growth and yield to root restriction under various water and nitrogen regimes. Journal of Plant Nutrition and Soil Science, 178, 384–392.
https://doi.org/10.1002/jpln.201400264
Mariotti, F., Tomé, D., & Mirand, P. P. (2008). Converting nitrogen into protein—beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184.
Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7, 7670.
https://doi.org/10.1038/s41598-017-08066-y
Mojid, M. A., Murad, K. F. I., Tabriz, S. S., & Wyseure, G. C. L. (2013). An advantageous level of irrigation water salinity for wheat cultivation. Journal of Bangladesh Agricultural University, 11, 141–146.
https://doi.org/10.3329/jbau.v11i1.18225
Navarro, A., Bañón, S., Olmos, E., Sánchez-Blanco, M. J. (2007). Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172, 473–480. https://doi.org/10.1016/j.plantsci.2006.10.006
Navarro, A., Vicente, M. J., Martínez-Sánchez, J. J., Franco, J. A., Fernández, J. A., & Bañón. S. (2008). Influence of deficit irrigation and paclobutrazol on plant growth and water status in Lonicera implexa seedlings. Acta Horticulturae, 782, 299–304.
https://doi.org/10.17660/ActaHortic.2008.782.37
Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological response of plants to salinity. Annals of Botany, 119, 1–11. https://doi.org/10.1093/aob/mcw191
Olmo, M., Alburquerque, J. A., Barrón, V., del Campillo, M. C., Gallardo, A., Fuentes, M., & Villar, R. (2014). Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biology and Fertility of Soils, 50, 1177–1187. https://doi.org/10.1007/s00374-014-0959-y
Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT-Food Science and Technology, 138, 110796. https://doi.org/10.1016/j.lwt.2020.110796
Rezaie, N., Razzaghi, F., & Sepaskhah, A. R. (2019). Different levels of irrigation water salinity and biochar influence on faba bean yield, water productivity, and ions uptake. Communication in Soil Science and Plant Analysis, 50, 611–626. https://doi.org/10.1080/00103624.2019.1574809
Ruisi, P., Amato, G., Badagliacca, G., Frenda, A.S., Giambalvo, D., & Di Miceli, G. (2017). Agro-ecological benefits of faba bean for rainfed Mediterranean cropping systems. Italian Journal of Agronomy, 12, 865. https://doi.org/10.4081/ija.2017.865
SAS Institute Inc. (2007). SAS user's guide in statistics (9th ed.). Cary: SAS Institute Inc.
Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131.
https://doi.org/10.1016/j.sjbs.2014.12.001
Suppadit, T., Phumkokrak, N., & Poungsuk, P. (2012). The effect of using quail litter biochar on soybean (Glycine max [L.] Merr.) production. Chilean Journal of Agricultural Research, 72, 244-250.
Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray. J., Petroff, A., & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62–68. https://doi.org/10.1016/j.jenvman.2013.05.057
Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205–212.
https://doi.org/10.1111/j.1475-2743.2011.00340.x