تاثیر کود زیستی نیتروژن و تنش آبی بر کیفیت علوفه‌ای تریتیکاله در شرایط اقلیمی خشک

نوع مقاله : مقاله کامل

نویسندگان

بخش اگرواکولوژی، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، شیراز، ج. ا. ایران

چکیده

فهم برهمکنش آب و قابلیت دسترسی به کود نیتروژن موضوع مهمی برای ثبات تولید علوفه در مناطق خشک است. این مطالعه، برهمکنش منابع نیتروژن و تنش آبی بر مهمترین ویژگی‌های گیاه تریتیکاله (×Triticosecale Wittmack) که در کیفیت علوفه‌ای آن نقش دارند را در منطقه‌ای با شرایط اقلیمی خشک از ایران در سال های 2016-2015 و 2017-2016 مورد بررسی قرار داده است. رژیم‌های آبیاری شامل دو سطح در سال نخست: 1- آبیاری مطلوب و 2- قطع آبیاری پس از مرحله‌ی گلدهی (تنش آبی) بودند. در سال دوم، شرایط دیم نیز به عنوان تیمار سوم به آزمایش اضافه شد. منابع نیتروژن شامل چهار سطح: 1- تیمار زیستی: باکتری آزوسپیریلوم 2- تیمار تلفیقی: استفاده از باکتری آزوسپیریلوم + 75 کیلوگرم نیتروژن بر هکتار به صورت اوره 3- کود نیتروژن: 150 کیلوگرم نیتروژن بر هکتار به صورت اوره 4- شاهد: صفر کیلوگرم نیتروژن بر هکتار بودند. تنش آبی سبب کاهش نسبت برگ به ساقه، وزن خشک اندام هوایی، گوارش پذیری ماده‌ی خشک (DMD) و فیبرهای نا محلول در شوینده‌های اسیدی (ADF) شد. در مقابل، تنش آبی مقدار پروتئین خام (CP)، فیبرهای نا محلول در شوینده‌های خنثی (NDF) و مقدار خاکستر را افزود. اما، اثر تنش رطوبتی بر مقدار خاکستر، گوارش پذیری ماده‌ی خشک، فیبرهای نا محلول در شوینده‌های اسیدی، نسبت برگ به ساقه (در سال 2016-2015) و مقدار پروتئین خام وابسته به کاربرد منبع نیتروژن بود (برهمکنش معنی‌دار کود نیتروژن × رژیم آبیاری). بالاترین مقدار پروتئین خام، مقدار گوارش پذیری ماده‌ی خشک، مقدار خاکستر و نسبت برگ به ساقه (در سال 2016-2015) و کمترین مقدار فیبر نا محلول در شوینده‌های اسیدی با استفاده از کود تلفیقی در مقایسه با سایر منابع نیتروژن در شرایط تنش آبی بدست آمد. بنابراین، تلفیق کود زیستی (باکتری آزوسپیریلوم) و کود شیمیایی نیتروژن (75 کیلوگرم بر هکتار) می‌تواند به صورت موففقیت آمیزی در جهت افزایش کیفیت علوفه تریتیکاله در شرایط تنش آبی در سامانه‌های پایدار کشاورزی مناطق خشک ایران استفاده شود.

کلیدواژه‌ها


Anderson, W. K. (1985). Grain yield responses of barley and durum wheat to split nitrogen applications under rainfed conditions in a Mediterranean environment. Field Crops Research, 12, 191-202. https://doi.org/10.1016/0378-4290(85)90068-1
Barati, V., & Ghadiri, H. (2017). Assimilate and nitrogen remobilization of six-rowed and two-rowed winter barley under drought stress at different nitrogen fertilization. Archives of Agronomy and Soil Science, 63, 841-855. https://doi.org/10.1080/03650340.2016.1238075
Barati, V., Ghadiri, H., Zand- Parsa, Sh., & Karimian, N. (2015). Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi- arid Mediterranean climate. Archives of Agronomy and Soil Science, 61, 15-32. https://doi.org/10.1080/03650340.2014.921286
Baron, V. S., Juskiw, P. E., & Aljarrah, M. (2015). Triticale as a forage. In Eudes, F. (Ed.). Triticale (pp.189-212). Switzerland: Springer Cham. https://doi.org/10.1007/978-3-319-22551-7_10
Brandt, K., & Mølgaard, J. P. (2001). Organic agriculture: Does it enhance or reduce the nutritional value of plant foods? Journal of Science of Food and Agriculture, 81, 924-931. https://doi.org/10.1002/jsfa.903
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (1996). Azospirillum-inoculation in pregerminating wheat seeds. Canadian Journal of Microbiology, 42, 83-86. https://doi.org/10.1139/m96-013 
Creus, C. M., Sueldo, R. J., & Barassi, C. A. (2004). Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82, 273-281. https://doi.org/10.1139/b03-119
Dadrasan, M., Chaichi, M. R., Pourbabaee, A. A., Yazdani, D., & Keshavarz-Afshar, R. (2015). Deficit irrigation and biological fertilizer influence on yield and trigonelline production of fenugreek. Industrial Crops and Products, 77, 156-162. https://doi.org/10.1016/j.indcrop.2015.08.040
Day, W., Lawlor, D., & Day, A. (1987). The effect on barley yield and water use in two contrasting years. Irrigation Science, 8, 115-130. https://doi.org/10.1007/BF00259476
Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., Labandera-González, C., Caballero Mellado, J., Aguirre, J. F., Kapulnik, Y., Brener, S., Burdman, S., Kadouri, D., Sarig, S., & Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Australian Journal of Plant Physiology, 28, 871-879. https://doi.org/10.1071/PP01074
Droushiotis, D., N. (1985). Effect of variety and harvesting stage on forage production of vetch in a low rainfall environment. Field Crops Research, 10, 49-55. https://doi.org/10.1016/0378-4290(85)90005-X
 Ercoli, L., Lulli, L., Mariotti, M., Masoni, A., & Arduini, I. (2008). Post-anthesis dry matter and nitrogen dynamics in durum wheat as affected by nitrogen supply and soil water availability. European Journal of Agronomy, 28, 138-147. https://doi.org/10.1016/j.eja.2007.06.002
Frederick, J. R., & Camberato, J. J. (1994). Leaf net CO2-exchange rate and associated leaf traits of winter wheat grown with various spring nitrogen fertilization rates.  Crop Science, 34, 432-439. https://doi.org/10.2135/cropsci1994.0011183X003400020024x
Grimes, D. W., Yamada, H., & Hughes, S. W. (1987). Climate- normalized cotton leaf water potentials for irrigation scheduling. Agricultural Water Management, 12, 293-304. https://doi:10.1016/0378-3774 (87)90004-7
Goverin, C., Snyders, F., Muller, N., Botes, W., Foxa, G., & Manleya, M. (2011). A review of triticale uses and the effect of growth environment on grain quality. Journal of the Science of Food and Agriculture,91, 1155-1165. https://doi.org/10.1002/jsfa.4338
Haberle, J., Svoboda, P., & Raimanova, I. (2008). The effect of post- anthesis water supply on grain nitrogen concentration and grain nitrogen yield of winter wheat. Plant Soil and Environment, 54, 304-312. https://doi.org/10.17221/422-PSE
Hardie, K., & Leyton, L. (1981). The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. in phosphate deficient soil. New Phytologist, 89, 599-608. https://doi.org/10.1111/j.1469-8137.1981.tb02339.x
Jorgensen, H., Gabert, V. M., & Fernández, J. A. (1999). Influence of nitrogen fertilization on the nutritional value of high-lysine barley determined in growing pigs. Animal Feed Science and Technology, 79, 79-91. https://doi.org/10.1016/S0377-8401(99)00011-5
Maleki Farahani, S., & Chaichi, M. R. (2013). Whole forage barley crop quality as affected by different irrigation and fertilizing systems. Communications in Soil Science and Plant Analysis, 44, 2961-2973. https://doi.org/10.1080/00103624.2013.829848
Ozturk, A., Caglar, O., & Sahin, F. (2003). Yield response of wheat and barley to inoculation of plant growth promotion rhizobacteria at various levels of nitrogen fertilization. Journal of Plant Nutrition and Soil Science, 166, 262-266. https://doi.org/10.1002/jpln.200390038
Ozturk, A., & Aydin, F. (2004). Effect of water stress at various growth stages on some quality characteristics of winter wheat. Journal of Agronomy and Crop Science, 190, 93-99. https://doi.org/10.1046/j.1439-037X.2003.00080.x
Pala, M., Matar, A., & Mazid, A. (1996). Assessment of the effects of environmental factors on the response of wheat to fertilizer in on-farm trials in a Mediterranean type environment. Experimental Agriculture, 32, 339-349. https://doi.org/10.1017/S0014479700026272
Passioura, J. B. (2002). Environmental biology and crop improvement. Functional Plant Biology, 29, 537-546.  https://doi.org/10.1071/FP02020   
Rasmussen, P. E., & Rohde, C. R. (1991). Tillage, soil depth and precipitation effects on wheat response to nitrogen. Soil Science Society of American Journal, 55, 121-124. https://doi.org/10.2136/sssaj1991.03615995005500010021x
Safari, J., Mushi, D. E., Kifaro, G. C., Mtenga, L. A., & Eik, L. O. (2011). Seasonal variation in chemical composition of native forages, grazing behavior, and some blood metabolites of small East African goats in a semi-arid area of Tanzania. Animal Feed Science and Technology, 164, 62-70. https://doi.org/10.1016/j.anifeedsci.2010.12.004
SAS. (2004). Statistical analysis software. Version 9. Cary (NC): SAS Institute.
Seligman, N. G., & Sinclair, T. R. (1995). Global environment change and simulated forage quality of wheat. II. Water and nitrogen stress. Field Crops Research, 40, 29-37. https://doi.org/10.1016/0378-4290(94)00092-Q
Shangguan, Z., Shao, M., & Dyckmans, J. (2000). Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology, 156, 46-51. https://doi.org/10.1016/S0176-1617(00)80271-0
Singh, D. K., & Sale, P. W. G. (2000). Growth and potential conductivity of white clover roots in dry soil with increasing phosphorus supply and defoliation frequency. Agronomy Journal, 92, 868-874. https://doi.org/10.2134/agronj2000.925868x
Tainton, N. (1999). Veld management in South Africa. Pietermaritzburg: University of Natal Press. https://doi.org/10.2989/10220119909485728
Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., & Belford, R. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104, 77-85. https://doi.org/10.1016/j.fcr.2007.03.023
Wall, G. W., Garcia, R. L., Wechsung, F., & Kimball, B. A. (2011). Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agriculture, Ecosystem and Environment, 144, 390-404. https://doi.org/10.1016/j.agee.2011.07.006
Wu, Q. S., Srivastava, A. K., & Zou, Y. N. (2013). AMF-induced tolerance to drought stress in citrus. Scientia Horticulturae,164, 77-87. https://doi.org/10.1016/j.scienta.2013.09.010
Zadocks J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x