تحلیل ارتعاشی مواد بالشتک صندلی تراکتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه شهرکرد، ایران

2 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی ، دانشگاه شهرکرد، شهرکرد، ایران

3 گروه مهندسی مکانیک بیوسیستم،‌ دانشگاه اراک، اراک، ج، ا، ا، ایران

چکیده

 رانندگان ماشین­های کشاورزی در معرض محدوده وسیعی از ارتعاشات غیرمستقیم، از طریق صندلی آن هستند و به مرور زمان آسیب‌های دائمی برای آن­ها به‌وجود می‌آید. یکی از راه­های کاهش ارتعاشات منتقل شده، استفاده از مواد مناسب برای نشستگاه صندلی تراکتور است. مطالعه حاضر به منظور انتخاب فوم یا اسفنج مناسب و بررسی عوامل مختلف در کاهش لرزشهای وارد شده به بدن اپراتور به منظور ارتقاء سلامت رانندگان و افزایش کارآیی کار آنها انجام شده است.  آزمایش‌های ارتعاشی در شتاب‌های مختلف روی دو ماده فوم و اسفنج در ضخامت­ها و دانسیته­های مختلف برای جرم­‌های متفاوت سرنشین انجام شد و سیگنال‌های شتاب­های ورودی و خروجی ثبت و تجزیه و تحلیل ­شدند. با استفاده از آنالیز تحلیل واریانس میانگین مربعات شتاب ورودی و خروجی، نوع ماده مورد استفاده در نشستگاه صندلی و اثر عوامل مختلف بر آن­ها بررسی­شد.نتایج نشان داد که در کاهش ارتعاشات اسفنج برای جرم 90 کیلوگرم و بیشتر و فوم برای جرم 75 کیلوگرم و کمتر، کارایی بالاتری داشتند. همچنین اسفنج، برای شتاب تحریک بالاتر از 6 متر بر مجذورثانیه و فوم، برای شتاب تحریک 3 متر بر مجذورثانیه و پایین‌تر مناسب بود. لذا با توجه به شرایط کاری ماشین‌های کشاورزی و خصوصیات انتروپومتریکی رانند‌ه‌های ایرانی و محدود مناسب ضخامت کوسن صندلی (6-8 سانتیمتر)، پیشنهاد می‌شود کوسن صندلی آن‌ها به صورت ترکیبی از فوم و اسفنج با دانسیته‌ بالا و ضخامت 8 سانتیمتر ساخته شود.

کلیدواژه‌ها


Azrah, K., Khavanin, A., Sharifi, A., Safari, Z., & Mirzaei, R. (2014). Assessment of metro passengers’ convenience while sitting and standing in confrontation with whole-body vibration. International Journal of Occupational Hygiene, 6(4), 192-200.
Barač, Ž., Plaščak, I., Jurić, T., Jurišić, M., Zimmer, D., Vidaković, I., & Marković, M. (2018). Operator’s whole body vibrations dependent of agrotechnical surface, speed of movement and seat upholstery. Tehnički Glasnik, 12(2), 68-73.
Barikani, D. (2005). Polyurethane: Chemistry, Properties, Application, Timeliness. Tehran: Iran Polymer Petrochemical Research Institute. (In Persian)
Barikani, D. (2007). Polyurethane rigid foams. Tehran: Polymer Science and Engineering Association of Iran. (In Persian)
Chaffin, D. B., Andersson, G. B., & Martin, B. J. (2006). Occupational biomechanics. Hoboken, New Jersey: John Wiley & Sons.
Corsaro, R. D., & Sperling, L. H.. (1990). Sound and vibration damping with polymers. Washington, DC: American Chemical Society.
Cvetanovic, B., Cvetković, D., Praščević, M., Cvetković, M., & Pavlović, M. (2017). An analysis of the impact of agricultural tractor seat cushion materials to the level of exposure to vibration. Journal of Low Frequency Noise, Vibration and Active Control, 36(2), 116-123.
Demec, M., Lukic, J., & Milic, K. (2002). Some aspects of the investigation of random vibration influence on ride comfort. Journal of Sound and Vibration, 253(1), 109-129.
Drakopoulos, D. (2007). A review of the current seat technologies in agricultural tractors. Department of biosystems engineering university of Manitoba. Winnipeg, Canada. Retrieved from: http://baer.uni-ruse.bg/papers_v7/2005_v7_02.pdf
Fairley, T. E., & Griffin, M. J. (1990). The apparent mass of the seated human body in the fore-and-aft and lateral directions. Journal of Sound and Vibration, 139(2), 299-306.
Ferrarin, M., Andreoni, G., & Pedotti, A. (2000). Comparative biomechanical evaluation of different wheelchair seat cushions. Journal of Rehabilitation Research and Development, 37(3), 315-324.
Griffin, M. J., Whitham, E. M., & Parsons, K. C. (1982). Vibration and comfort I. Translational seat vibration. Ergonomics, 25(7), 603-630.
Koley, S., Sharma, L., & Kaur, S. (2010). Effects of occupational exposure to whole-body vibration in tractor drivers with low back pain in Punjab. The Anthropologist, 12(3), 183-187.
Lamont, H. S., Cramer, J. T., Bemben, D. A., Shehab, R. L., Anderson, M. A., & Bemben, M. G. (2011). Effects of a 6-week periodized squat training with or without whole-body vibration upon short-term adaptations in squat strength and body composition. The Journal of Strength & Conditioning Research, 25(7), 1839-1848.
Lings, S., & Leboeuf-Yde, C. (2000). Whole-body vibration and low back pain: A systematic, critical review of the epidemiological literature 1992–1999. International Archives of Occupational and Environmental Health, 73(5), 290-297.
Machado, A., García- López, D., González- Gallego, J., & Garatachea, N. (2010). Whole- body vibration training increases muscle strength and mass in older women: a randomized- controlled trial. Scandinavian Journal of Medicine & Science in Sports, 20(2), 200-207.
Makhsous, M., Hendrix, R., Crowther, Z., Nam, E., & Lin, F. (2005). Reducing whole-body vibration and musculoskeletal injury with a new car seat design. Ergonomics, 48(9), 1183-1199.
Maleki, A., & Mohtasebi, S. S. (2014). Natural frequency analysis of tractor operator's body parts. Research in Rehabilitation Sciences, 10(2), 250-268.
Mansfield, N. J. (2004). Human response to vibration. Boca Raton, FL: CRC press.
Mansfield, N. J., & GRIFFIN, M. J. (2002). Effects of posture and vibration magnitude on apparent mass and pelvis rotation during exposure to whole-body vertical vibration. Journal of Sound and Vibration, 253(1), 93-107.
McBride, J. M., Nuzzo, J. L., Dayne, A. M., Israetel, M. A., Nieman, D. C., & Triplett, N. T. (2010). Effect of an acute bout of whole body vibration exercise on muscle force output and motor neuron excitability. The Journal of Strength & Conditioning Research24(1), 184-189.
Mehta, C. R., & Tewari, V. K. (2000). Seating discomfort for tractor operators–a critical review. International Journal of Industrial Ergonomics, 25(6), 661-674.
Mircheski, I., Kandikjan, T., & Simonovski, P. (2010). Virtual testing and experimental verification of seat comfort in driver’s seat for passenger automobile. Ss Cyrill & Methodius University, Faculty of Mechanical Engineering, Karpos II-bb, 1000. Retrieved from: http://www.mvm.fink.rs/Journal/Archive/2010/2010V36N2/ile/ile_rad.pdf.
Standard, I. (1997). ISO2631 1. Mechanical vibration and shock; Evaluation of human exposure to whole body vibration in the working environment; Part 1 General requirements.  Geneva: International Standard Organization.
Tiemessen, I. J., Hulshof, C. T., & Frings-Dresen, M. H. (2007). An overview of strategies to reduce whole-body vibration exposure on drivers: A systematic review. International Journal of Industrial Ergonomics, 37(3), 245-256.
Tsai, C. L., & Lin, J. C. (2011). The effect of whole- body vibration stimulus using varying oscillation amplitudes on lower body power. Medicine & Science in Sports & Exercise, 43(5), 799-813.
Turner, A. P., Sanderson, M. F., & Attwood, L. A. (2011). The acute effect of different frequencies of whole-body vibration on countermovement jump performance. The Journal of Strength & Conditioning Research, 25(6), 1592-1597.