اثررقمواندازه میوه بر حساسیت به کوفتگی و برخی خواص فیزیکی میوه سیب

نوع مقاله : مقاله کامل

نویسندگان

گروه باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران

چکیده

چکیده- برای اغلب میوه ها، ازجمله سیب،کوفتگی متداول­ترین آسیب مکانیکی پس ازبرداشت است. حساسیت به کوفتگی ناشی از آسیب‏های مکانیکی درسه رقم تجاری(شامل ’جاز‘،’گرانی اسمیت‘و’فوجی‘) و در هر رقم در چهار درجه تجاری میوه (شامل 135، 120، 100 و 88) اندازه­گیری شد. برای ایجاد کوفتگی یک گلوله فلزی با وزن مشخص (110 گرم) از ارتفاع مشخصی (30 سانتی­متر) و از درون یک لوله پی وی سی بر روی میوه ها رها  شد برخی خواص فیزیکی میوه و همچنین شاخص­های مربوط به کوفتگی اندازه گیری شد. نتایج نشان داد که رقم جاز کمترین و رقم گرانی اسمیت بیشترین حساسیت را در برابر کوفتگی داشتند که می تواند بیانگر این مسئله باشد که رقم گرانی اسمیت در فرایند نقل و انتقال تجاری آسیب بیشتری خواهد دید. ارزیابی اندازه میوه نشان داد که میوه­های کوچکتر در برابر کوفتگی حساسیت کمتری داشتند. بررسی ارتباط بین خواص فیزیکی میوه و میزان کوفتگی نیز نشان داد که به طور کلی حجم میوه همبستگی مثبت بالا و چگالی، سفتی و وزن خشک میوه نیز همبستگی منفی بالایی با حجم کوفتگی داشتند. نتایج این پژوهش می تواند در کاهش میزان صدمات مکانیکی وارده به میوه سیب بسیار مفید واقع شود که مورد توجه هر دو تولید کنندگان میوه و شرکت های فعال در بخش نگهداری و بازاررسانی میوه می باشد.

کلیدواژه‌ها


Banks, N. H., & Joseph, M. (1991). Factors affecting resistance of banana fruit to compression and impact bruising. Journal of the Science of Food and Agriculture, 56, 315-323.
Bollen, A. (2005). Major factors causing variation in bruise susceptibility of apples (Malus domestica) grown in New Zealand. New Zealand journal of Crop and Horticultural Science, 33, 201-210.
Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. John Wiley & Sons Ltd., Chichester, UK.
Cody, R. P., Smith, J. K., & Cody, R.P. (1991). Applied statistics and the SAS programming language. North-Holland New York.
De Ketelaere, B., Desmet, M., & De Baerdemaeker, J. (2006). Determination of bruise susceptibility of tomato fruit by means of an instrumented pendulum. Postharvest Biology and Technology, 40, 7-14.
Ericsson, N. A., & Tahir, I. (1996). Studies on apple bruising: I. Estimation of incidence and susceptibility differences in the bruising of three apple cultivars. Acta Agriculturae Scandinavica B-Plant Soil Sciences, 46, 209-213.
Everitt, B. S., Dunn, G. (1992). Applied Multivariate Data Analysis. New York, NY. Oxford University Press.
Garcia, J. L., Ruiz Altisent, M. & Barreiro, P. (1995). Factors influencing Mechanical properties and bruiz susceptibility of apples and pears.Journal of Agricultural Engineering Research, 61, 11-18.
Harker, F. R., Redgwell, R. J., Hallett, I. C., Murray, S. H., & Carter, G. (1997). Texture of fresh fruit. Horticultural Reviews, 20, 121-224.
Jafari, R., & Nassiri, S. M. (2013). Modeling static bruising in apple fruits: Acomprative study, part II: Finite element approach. Iran Agriculture Research, 32 (2), 11-20.
Johnson, K. L., & Johnson, K. K. L. (1987). Contact mechanics. Cambridge university press, Cambridge, UK.
Kupferman, E. (2006). Minimizing bruising in apples. Postharvest Information Network, Washington State University, Tree Fruit Research and Extension Center.
Malone, M. (2005). Malus domestica ‘Scifresh’. Plant Varieties Journal, 18, 256-260.
Massart, D. L., Vandeginste, B., Buydens, L., De Jong, S., Lewi, P., & Smeyers Verbeke, J. (1997). Handbook of chemometrics and qualimetrics: Part A. Elsevier Science Pub Co.
Mohsenin, N. N. (1986). Physical properties of plant and animal materials. Vol. 1. Structure, physical characterisitics and mechanical properties (2nd rev. and updated ed.). Gordon and Breach Science Publishers, New York.
Opara, L. U. (2007). Bruise susceptibilities of ‘Gala’ apples p as affected by orchard management practices and harvest date. Postharvest Biology and Technology, 43, 47-54.
Pang, D. W., Studman, C. J., Banks, N. H., & Baas, P.H. (1996). Rapid assessment of the susceptibility of apples to bruising. Journal of Agricultural Engineering Research, 64, 37-47.
Pasini, L., Ragni, L., Rombola, A., Berardinelli, A., Guarnieri, A., & Marangoni, B. (2004). Influence of the fertilisation system on the mechanical damage of apples. Biosystems Engineering, 88, 441-452.
Ragni, L., & Berardinelli, A. (2001). Mechanical Behaviour of Apples, and Damage during Sorting and Packaging. Journal of Agricultural Engineering Research, 78, 273-279.
SAS Institute, Inc. (1985). The SAS program for personal computer. SAS Institute, Inc., Cary, N.C.
Scheerlinck, N., Desmet, M., & De Baerdemaeker, J. (2006). Factors that affect tomato bruise development as a result of mechanical impact. Postharvest Biology and Technology, 42, 260-270.
Schulte, N., Brown, G., & Timm, E. (1992). Apple impact damage thresholds. Applied Engineering in Agriculture, 8 (1), 55-60.
Studman, C., Brown, G., Timm, E., Schulte, N., & Vreede, M. (1997). Bruising on blush and non-blush sides in apple-to-apple impacts. Transactions of the ASAE, 40, 1655-1663.
Van Zeebroeck, M., Ramon, H., De Baerdemaeker, J., Nicolai, B., & Tijskens, E. (2007). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45, 157-167.
Van Zeebroeck, M., Tijskens, E., Dintwa,E., Kafashan, J., Loodts, J., De Baerdemaeker, J., & Ramon, H. (2006). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Case study of vibration damage during apple bulk transport. Postharvest Biology and Technology, 41, 92-100.