تاثیر تنش خشکی در مراحل مختلف نموی بر روابط آبی، تراکم روزنه و تغییرات کیفی کلزا (Brassica napus L.)

نوع مقاله : مقاله کامل

نویسندگان

1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه مراغه

2 دانشگاه مراغه

چکیده

چکیده- به منظور بررسی اثر تنش خشکی بر روابط آبی، تراکم روزنه، محتوای کلروفیل و عملکرد کلزا، آزمایشی در چهار سطح تنش خشکی: L1 (آبیاری کامل در حد گنجایش زراعی)، L2 (70 درصد میزان آب در دسترس)، L3 (50 درصد میزان آب در دسترس)، L4 (30 درصد میزان آب در دسترس) و در سه مرحله رشدی: ساقه‌روی (T1)، گلدهی (T2) و خورجین‌بندی (T3) به اجرا درآمد. نتایج نشان داد که کمترین مقدار محتوای آب و پتانسیل آب برگ در تیمار 30 درصد میزان آب در دسترس و دوره خورجین‌بندی بدست آمد. بیشترین کارآیی مصرف آب در زمان گلدهی و خورجین‌بندی با 70 درصد میزان آب در دسترس مشاهده شد. علاوه بر این، نتایج به دست آمده نشان داد که روزنه‌ها فقط تحت تاثیر تنش خشکی قرار گرفت و بالاترین تراکم روزنه در تیمار 30 درصد میزان آب قابل دسترس مشاهده شد. کمترین مقادیر کلروفیل a، b و کلروفیل کل در ترکیب تیماری تنش خشکی شدید (30 درصد آب قابل دسترس) و مرحله خورجین‌بندی مشاهده گردید که نسبت به تیمار آبیاری کامل کاهشی در حدود 59، 67 و 62 درصد را نشان داد. به همین ترتیب، پایین‌ترین مقدار عملکرد در همین تیمار مشاهده شد. به طوری‌که، کاهش عملکرد دانه در تیمار 30 درصد آب در دسترس در مرحله خورجین بندی 2/46 درصد بود. محتوای پروتئین دانه به واسطه تنش خشکی تحت تاثیر قرار گرفت به گونه‌ای که کاهش مقدار آب در دسترس به کاهش مقدار پروتئین منجر شد. این درحالی بود که، درصد روغن دانه‌ها نیز تحت تاثیر تنش خشکی قرار گرفت به طوری که بیشترین تأثیر تنش خشکی شدید بر درصد روغن در مرحله گلدهی بود. در نتیجه می‌توان بیان کرد که تنش خشکی شدید باعث کاهش مقادیر کلروفیل های a، b، کلروفیل کل، پروتئین، درصد روغن و عملکرد گردید.

کلیدواژه‌ها

موضوعات


Ahmadi, M., & Bahrani, M.J. (2009). Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. American-Eurasian Journal of Agricultural & Environmental Science,5, 755-761.
Allakhverdiev,  S.I., Sakamoto, A., Nishiyama, Y., & Murata, N. (2000). In activation of photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiology, 122, 1201–1208.
Ando, T., & Ouguchi, Y. (1989). A possible role of sodium in chlorophyll biosynthesis of sodium requiring C4 plants. Transactions of 14th ICSS vol. IV, pp. 152-157.
Ashraf,  M., & Harris, P.J.C. (2013).Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163-190.
Ashraf,  M., &  Mehmood,  S. (1990). Response of four Brassica species to drought stress. Journal of Experimental  Botany, 30, 93-100.
Badger, M.R. (1985). Photosynthetic oxygen exchange. Annual Plant Physiology, 38, 27.
Banuelos, G.S., Bryla, D.R., & Cook, C.G. (2002). Vegetative production of kenaf and oilseed rape under irrigation in central California. Industrial Crops and Products, 15, 237–245.
Biehler, K., & Fock, H. (1996). Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiology, 112, 265-272.
Champolivier, L., & Merrin, A. (1996). Effects of water stress applied at different growth stages to Brassica napus L.var. Oleifera on yield, yield components and seed quality. European Journal of Agronomy, 5, 153-160. Chaves, M.M., Maroco, J.P., & Pereira, J.S. (2003). Understanding Plant response to drought: from genes to the whole plant. Functional Plant Biology, 30, 239-264.
Din, J., Khan, S.U., Ali, I., & Gurmani, A.R. (2011). Physiological and agronomic response of rapeseed varieties to drought stress. The Journal of Animal & Plant Sciences, 21, 78-82.
 Drake,  P.L., Ray, H.F., & Peter, J.F. (2012). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Exp. Bot. Doi: 10.1093/jxb/ers347. FAO. 2013. http:// faostat. fao. org/.
Friedt, W., Snowdon, R., Ordon, F., & Ahlemeyer, J. (2007). Plant Breeding: Assessment of Genetic Diversity in Crop Plants and is Exploitation in Breeding. Progress in Botany, 168, 152-177.
Holmstrom, K., Mantyla, E., Welin, B., Mandal, A., Palva, E. T., Tunnela, O.E., & Londesborough, J. 1996. Drought tolerance in tobacco. Nature, 379, 683-684.
Istanbulluoglu, A.,  Arslan, B., Gocmen, E., Gezer, E., & Pasa, C. (2010). Effects of deficit irrigation regimes on the yield and growth of oilseed rape (Brassica napus L.). Biosystems engineering, 105, 388 – 394.
Jagtap, R.A., Tawar, P.N., Sen, D.R., Pant, N.M., & Hapase, D.G. (1992). Physio-anatomical studies in sugarcane varietes and their somaclones grown under water stress conditions.  Plant Physiology and Biochemistry, 1, 42-48.
Jensen, C.R., Mogensen, V.O., Mortensen, G., & Fieldsend, J.K. (1996). Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand. Field Crops Research, 47, 93-105.
Kaiser, W.M. (1987). Effect of water deficit on photosynthetic capacity. Physiologia Plantarum, 71, 142-144.
Kauser, R., Athar, H.R., & Ashraf, M. (2006). Chlorophyll Fluorescence: A potential indicator for rapid assessment of water stress tolerance in rapeseed (Brassica napus L.). Pakistan Journal of Botany, 38, 1501-1509.
LazcanoFerrat,  I., & Lovatt, C.J., (1999). Relation between relative water content, Nitrogen pools, and Growth of phaseolus vulgaris and phaseolus acutifolius, A. Gray during water deficit. Crop Science, 39 (2), 467-475.
Li, Y., fuchs, S.M.C.,  Cohen, Y., & Wallach, R. (2002). Water uptake profile response of corn to soil moisture depletion. Plant, Cell and Environment, 25, 491–500.
Loon, C.D. (1981).The effect of water stress on potato growth, development, and yield. American Journal of Potato Research, 58, 51-69.
Mann, L.J. (1963). Spectrometric determination of nitrogen in total micro-Kjeldahl digest. Analytical Chemestry, 35, 651-655.
Mailer, R.J., & Wratten, N. (1987). Glucosinolate variability in rapeseed in Australia. 7th International Rapeseed Congress, Poznan, Poland. pp. 661-675.
Mathur, D., Wattal, P.N., & Mathur, D. (1995). Influence of water stress on seed yield of Canadian rape at flowering and role of metabolic factors. Plant Physiology and Biochemistry New Delhi, 22, 115-118.
Matin, M.A., Brown, J., & Ferguson, H. (1989). Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy Journal, 81, 100-105.
McKersie, B.D., Bowley, S.R., Harjanto, E., & Leprince, O. (1996). Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutase, Plant Physiology, 111, 1177-1181.
Mingeau, M. (1974). Comportement du colza de printemps a la secheresse. Information Bull CETIOM, 36, l-11.
Moradshahi, A., SalehiEsksndari, A., & Kholdebarin, B. (2004). Some physiological responses of rapeseed (Brassica napus L.)to water deficit stress under laboratory conditions. Iranian Journal of Science & Technology, 28, 43-50.
Moorby, J., Munns, R., & Walcott, J. (1975). Effect of water deficit on photosynthesis and tuber metabolism in potatoes. Australian Journal of Plant Physiology, 2, 323-333.
MorantManceau, A., Pradier, E., & Tremblin, G. (2004). Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species to salt stress. Journal of Plant Physiology, 169, 25-33.
Morison, J.I., & Baker, N.R. (2007) Philosophical Transactions of the Royal Society of London. Series B: Biological Science, 363, 639-658.
Naik, G.R., Somashekar, R., & Hiremeth, S.M. (1993). Effect of water stress on growth and stomatal characterstics in sugarcane cultivars. Indian Sugar, 43, 645-649.
Nasri, M., Khalatbari, M., Zahedi, H., Paknejad, F., & TohidiMoghadam, H.R. (2008). Evaluation of micro and macro elements in drought stress condition in cultivars of rapeseed (Brassica napus L.). American Journal of Agricultural and Biological Sciences, 3, 579–583.
Nielsen, D.C., & Nelson, N.O. (1998). Black bean sensitivity to water stress at various growth stages. Crop Science, 38, 422-427.
Norouzi, M., Toorchi, M., HosseiniSalekdeh, G., Mohammadi, S.A., Neyshabouri, M.R., & Aharizad, S. (2008). Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed. Journal of Food, Agriculture & Environment, 6, 312 – 318.
Ogaya,  R., Llorens, L., &  Peñuelas, J. (2011). Density and length of stomatal and epidermal cells in "living fossil" trees grown under elevated CO2 and a polar light regime. Acta Oecologica, 37, 381-385.
Parry, M.A.J., Flexas, J., & Medrano, H. (2005). Prospects for crop production under drought: Research priorities and future directions. The Annals of Applied Biology, 147, 217-226.
Rashidi, S., ShiraniRad, A.H., AyeneBand, A., Javidfar, F., & Lak, S. (2012). Study of relationship between drought stress tolerance with some physiological parameters in rapeseed cultivars (Brassica napus L.). Annul Biology Research, 3, 564- 569.
Reynolds, M.P., Kazi, A.M., & Sawkins, M. (2005). Prospects for utilizing plant adaptive mechanisms to improve wheat and other crops in drought and salinity prone environments. Annals in Applied Biology, 146, 239-259.
Shaneka, S., Lawson, P.,  Pijut, M., & Michler, C.H. (2014). Comparison of arabidopsis stomatal density mutants indicates variation in water stress responses and potential epistatic effects. Journal Plant Biology, 57, 162-173.
Sharkey, T .D., Berry, J.A., & Sage, R.F. (1988). Regulation of photosynthetic electron-transport in Phaseolus vulgaris L. as determined by room-temperature chlorophylla fluorescence. Planta, 176, 415.
Shinozaki, K., & YamaguchiShinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant physiology,  115, 327.
Shinozaki, K., & YamaguchiShinozaki, K. (1996). Molecular responses to drought and cold stress. Current Opinion in Biotechnology,  7, 161-167.
ShiraniRad, A.H., & Zandi, P. (2012).The effect of drought stress on qualitative and quantitative traits of spring rapeseed (Brassica napus L.) cultivars. Žemdirbystė Agriculture, 99, 47–54.
ShiraniRad, A.H. (2012).  Study of Water Stress Effect on Yield and Some Agronomic Traits of Spring Rapeseed Varieties. International Journal of Science and Advanced Technology, 2, 71-78.
Strocher, V.L., Boathe, I.G., & Good,  R.G. (1995). Molecular cloning and expression of a turgorgene in Brassica napus. Plant Molecular Biology, 27, 541-551.
Tambussi, E.A., Bartoli, C.G., Bettran, J., Guiamet, J.J., & Araus, J.C. (2000). Oxidative damage to thylakoids proteins in water stressed leaves of wheat (Triticum aestivum L.). Physiologia Plantarum, 108, 398-404.
Taize, L., & Zeiger, E. (1991). Plant physiology. The Benjamin Cummings Publishing co., Inc. California, Pp 565.
Tesfamariam, E. H., Annandale, J.G., & Steyan, J.M. (2010). Water stress effects on winter rapeseed growth and yield. Agronomy Journal, 102, 658-666.
Topp, G.C., & Ferre, P.A. (2002). Water content. In: J.H. Dane and G. C. Topp (eds.). Methods of Soil Analysis: Physical Methods, Part 4. Soil Science Society of America, Inc. Madison, WI, USA, pp. 417-547
Vafabakhsh, J., NassiriMahallati, M., Koocheki, A., & Azizi, M. (2009). Effects of water deficit on water use efficiency and yield of rapeseed cultivars (Brassica napus L.). Journal of Iranian Field Crop Research, 7, 285-292.
Walker, K.C., & Booth, E.J. (2007). Agricultural aspects of rape and other Brassica products. European Journal of Lipid Science and Technology, 103, 441-446.
Wright, P.R., Morgan, J.M. &, Jessop,  R.S. (1996). Comparative adaptation of rapeseed (Brassica napus) and Indian mustard (B. juncea) to soil water deficits: Plant water relations and growth. Field Crops Research, 49, 51-64.
Xia, M.Z. (1994). Effects of soil drought during the generative development phase of faba bean (Vicia faba L.) on photosynthetic characters and biomass production. Journal of Agricultural Science, 122, 67-72.
Xu, Z.,  & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal Experimental Botany, 59 (12) ,  3317–3325.
Zahedi, H., & TohidiMoghdam, H.R. (2011). Effect of drought stress on antioxidant enzymes activities with zeolite and selenium application in rapeseed cultivars. Research on Crops, 27, 388-392.