مقدار یون‌ها و رابطه آن با برخی ویژگی‌های فیزیولوژیکی در رقم‌های زیتون در پاسخ به تنش شوری

نوع مقاله : مقاله کامل

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

چکیده- زیتون(Olea europaea L.)  یکی از باارزش­ترین و گسترده­ترین درختان میوه در ایران است. تغییراتی که در ثبات غشا، فتوسنتز و فعالیت آنزیم­های آنتی­اکسیدان در چهار رقم زیتون (‘دکل’، ‘شیراز’، ‘زرد’ و ‘آمیگدالیفولیا’) در اثر تنش شوری ایجادمی­شود با تأکید بر رابطه بین این ویژگی­ها و تجمع یون­های سدیم و پتاسیم مورد بررسی قرار گرفت. گیاهان در شرایط گلخانه­ای در معرض چهار تیمار  شوری (0، 100، 150 و 200 میلی مولار کلرید سدیم) قرار گرفتند. تیمار گیاهان زیتون با سطح­های بالای شوری، باعث کاهش مقدار کلروفیل نسبی برگ، فتوسنتز، تعرق و مقدار پتاسیم برگ و ریشه شد. تنش کلرید سدیم فعالیت آنزیم­های سوپراکسید دیسموتاز و پراکسیداز را در برگ­های زیتون افزایش داد. با افزایش غلظت کلرید سدیم در خاک، غلظت یون سدیم در برگ­ها و ریشه­ها افزایش یافت. تفاوت در کارایی مکانیسم دفع یون سدیم در رقم­های زیتون مورد مطالعه، سبب تفاوت در میزان تحمل آن­ها به تنش شوری شد. رقم ‘زرد’ بدون هیچ آسیب مشهودی به سلول­ها، بیشترین تحمل را به غلظت­های بالای نمک از خود نشان داد. رابطه بین ویژگی­های مورد مطالعه در پاسخ به تنش و تجمع یون­ها در برگ­ها و ریشه­های رقم­های زیتون به طور کامل مورد بحث قرار گرفت.

کلیدواژه‌ها

موضوعات


Agarwal, S., & Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stress in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19, 149-161.
Armengaud, P., Sulpice, R., Miller, A. J., Stitt, M., Amtmann, A., & Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen  assimilation in Arabidopsis roots. Plant Physiology, 150, 772-785.
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391-396.
Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Review of Plant Sciences, 13, 17-42.
Bajji, M., Kinet, J. M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane  stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70.
Baum, S.F., Tran, P.N., & Silk, W. K. (2000). Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytology, 146, 119-127.
Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168, 889-899.
Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry, 72, 248-254.
Candan, N., & Tarhan, L. (2003). Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiology and Biochemistry, 41, 35-40.
Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis, I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96, 235-247.
Demiral, M.A., Aktas Uygun, D., Uygun, M., Kasirga, E., & Karagozler, A. A. (2011). Biochemical response of Olea europaea cv. Gemlik to short-term salt stress. Turkish Journal of Biology, 35, 433-442.
Dionisio-Sese, M.L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1-9.
Dubey, R.S. (2005). Photosynthesis in plants under stressful conditions. In M. Pessarakli (Ed.), Handbook of photosynthesis (pp. 717-718). New York: CRC Press.
Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., & Turkan, I. (2007). Response of the cherry rootstock to salinity in vitro. Biologia Plantarum, 51, 597-600.
Franklin, J.A., & Zwiazek, J. J. (2004). Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate. Physiologia Plantarum, 120, 482-490.
Gao, S., Ouyang, S., Wang, S., Xu, Y., Tang, L., & Chen, E. (2008). Effect of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environment, 54, 374-381
Goreta, S., Bucevic-Popovic, V., Pavela-Vrancic, M., & Perica, S. (2007). Salinity-induced changes in growth, superoxide dismutase activity, and ion content of two olive cultivars. Journal of Plant Nutrition and Soil Science, 170, 398-403.
Jha, D., Shirley, N., Tester, M., & Roy, S.J. (2010). Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environment, 33, 793-804.
Kaya, C., Sonmez, O., Aydemır, S., & Dikilitas, M. (2013). Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish Journal of Agriculture and Forestry, 37, 188-194.
Khan, M.H., & Panda, S.K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologia Plantarum, 30, 81-89.
Lutts, S., Kinet, J. M., & Bouharmon, J. (1996). NaCl induced senescence in leave of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annual of Botany, 78, 389-398.
 Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50, 227-231.
Marschner, H. (1995). Mineral nutrition of higher plants. (2nd ed.). London: Academic Press.
Meneguzzo, S., Navari-Izzo, F., & Izzo, R. (1999). Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology, 155, 274-280.
Menvielle-Bourg, F.J. (2005). Superoxide dismutase (SOD), a powerful antioxidant, is now available orally. Phototherapie, 3: 1-4.
Misra, N., & Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163, 11-18.
Mousavi, A., Lessani, H., Babalar, M., Talaei, A.R., & Fallahi, E. (2008). Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. Journal of Plant Nutrition, 31, 1906-1916.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
Nebauer, S.G., Sanchez, M., Martinez, L., Lluch, Y., Renau-Morata, B., & Molina, R.V. (2013). Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. Plant Physiology and Biochemistry, 63, 61-69.
Noreen, Z., Ashraf, M., & Akram, N.A. (2012). Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). Journal of Applied Botany and Food Quality, 85, 91-96.
Omielon, J.A., Epistein, E., & Dvovak, J. (1991). Salt tolerance and ionic relations of wheat affected by individual chromosomes of salt tolerant Lophopyrum. Genome, 34, 961-974.
Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environment Safety, 60, 324-349.
Perica, S., Brkljaca, M., Goreta, S., Romic, D., & Romic, M. (2004). Vegetative growth and salt accumulation of six olive cultivars under salt stress. Acta Horticulture, 664, 555-560.
Perica, S., Goreta, S., & Vuletin Selak, G. (2008).  Growth, biomass allocation and leaf ion concentration of seven olive (Olea europaea L.) cultivars under increased salinity. Scientia Horticulturae, 117, 123-129.
Rodriguez, R., & Sanches, T. R. (1982). Peroxidase and IAA oxidase in germinating seeds of Cicer arientium L. Revista Espanola De Fisiologia, 38, 183-188.
Sepaskhah, A.R., & Yarami, N. (2010) Evaluation of macroscopic water extraction model for salinity and water stress in saffron yield production. International Journal of Plant Production, 4, 175-186.
Sharbatkhari, M., Galeshi, S., Shobbar, Z.S., Nakhoda, B., & Shahbazi, M. (2013). Assessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes. International Journal of Plant Production, 7, 437-454.
Sharma, N., Gupta, K., Gupta, S., & Hasegawa, H. (2005). Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica, 43, 609-613.
Sreenivasulu, N., Grimm, B., Wobus, U., & Weshke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435-442.
Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, K. (2011). Additive effects of Na+ and Cl- ions on barely growth under salinity stress. Journal of Experimental Botany, 62, 2189-2203.
Tavakkoli, E., Rengasamy, P., & McDonald, G.K. (2010). High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61, 4449-4459.
Van Rossun, M.W.P.C., Alberda, M., & Van Der Plas, L.H.W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Science, 130, 207-216.
Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14, 7370-7390.
Widodo, P.J.H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60, 4089-4103.
Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32, 667-685.
Young, C., & Jung, J. (1999). Water deficit-induced oxidative stress and antioxidative defenses in rice plants. Journal of Plant Physiology, 155, 255-261.