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ABSTRACT- Evaporation, as a major component of the hydrologic cycle, 
plays a key role in water resources development and management in arid and 
semi-arid climatic regions. Although there are empirical formulas available, 
their performances are not all satisfactory due to the complicated nature of the 
evaporation process and the data availability. This paper explores evaporation 
estimation methods based on nonlinear dynamic neural network model 
(NNARX ) and adaptive neuro-fuzzy inference system (ANFIS) techniques. It 
has been found that NNARX and ANFIS techniques have much better 
performances than the empirical formulas (for the test data set, NNARX R2 = 
0.95, ANFIS R2 = 0.94, Meyer R2 = 0.81 and Marciano R2 = 0.68). ANFIS and 
NNARX models are slightly better albeit the small difference. Although 
NNARX and ANFIS techniques seem to be powerful, their data input selection 
process is quite complicated. More studies are needed to gain wider experience 
about this data selection tool and how it could be used in assessing the 
validation data. 
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INTRODUCTION 

Evaporation has wide implications amongst hydrological processes and plays a key 
role in water resources management in arid and semiarid climatic regions. The most 
common and important factors affecting evaporation are solar radiation, air and soil 
temperature ,relative humidity, vapor pressure deficit, atmospheric pressure, and 
wind speed. In one of the earliest published papers, Dalton (27) pointed out that 
evaporation was proportional to the difference between vapor pressure of the air at 
the water surface and that of the overlying air, although apparently he never 
expressed this relationship in mathematical terms. (1) Later concluded that the vapor 
pressure deficit was a much more sensitive indicator of the water vapor conditions of 
the atmosphere and underwent greater variations for temperature changes than did 
the relative humidity. Evaporation losses should be considered in the design of 
various water resources and irrigation systems. In areas with little rainfall, 
evaporation losses can represent a significant part of the water budget for a lake or 
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reservoir, and may contribute significantly to the lowering of water surface elevation 
(23) .Therefore, accurate estimation of evaporation loss from the water body is of 
primary importance for monitoring and allocating water resources, at farm scales as 
well as at regional scales. Owing to its convenience and cost effectiveness, an 
evaporation pan is one of the most widely used instruments for the measurement of 
evaporation, but its performance is affected by instrumental limits and practical 
issues such as measurement errors and maintenance, which can reduce the accuracy 
of evaporation measurements. It is also difficult to use the pan by telemetry 
techniques, hence the human labor cost is high. Alternatively, mathematic models 
could be used to estimate evaporation from related weather variables. To date, many 
researchers have developed models for estimating free water evaporation all over the 
world (27). Mosner and Aulenbach (25) compared four empirical methods of 
evaporation estimation, including the Priestly–Taylor, Penman, DeBruin–Keijman, 
and Papa–Dakis equations for Lake Seminole, southwestern Georgia, and 
northwestern Florida, from April 2000 to September 2001. It has been found that the 
average monthly lake evaporation estimates derived from the empirical equations 
were as much as 16% in error. Therefore, there is room for improvement in the 
conventional evaporation models. In recent years, other methods have been explored 
by many researchers, such as the mass transfer methods (37, 27, 10) and eddy 
correlation techniques (36, 2). Despite the large amount of literature published, most 
of the reported methods are too demanding for observed meteorological data and 
prone to errors if locally calibrated parameters are not available. In addition, 
evaporation is an incidental, nonlinear, complex, and unsteady process, so it is 
difficult to derive an accurate formula to represent all the physical processes 
involved. As a result, there is a new trend in using data mining techniques such as 
fuzzy logic, artificial neural networks (ANN), and ANFIS to estimate evaporation. 
This followed a large number of studies in which some hydrological processes were 
simulated by nonlinear models based on ANN, support vector machines, fuzzy 
logical system, polynomial function, local linear regression, Bayesian networks, 
decision trees, etc. (27, 7, 17, 18). In evaporation estimation, some typical studies 
reported so far use ANN in modeling daily soil evaporation (8), daily 
evapotranspiration (19), daily pan evaporation (30, 33, 18, 17), and hourly pan 
evaporation (32). Using temperature data alone, Sudheer et al. (30) found that a 
properly trained ANN model could reasonably estimate the evaporation values at 
their study area in a temperate region. From these reports, it is clear that ANN 
models are superior to the conventional regression models, as ANN does not require 
any predetermination of regression forms. This advantage becomes more promising 
when an engineering problem is too complex to be represented by regression 
equations (32). In comparison with a wider application of ANN in other fields (such 
as flood forecasting, 10, 6, 35, 5, 4, 20), the modeling experience of ANN in 
evaporation estimation is still quite limited and there is a need to study and report 
trials of this technique in different climate regions so that some generalization of this 
method could be achieved. 

 

MATERIALS AND METHODS 

Empirical Methods of Estimating Evaporation 
Evaporation pans are commonly used to estimate evaporation from lakes and 
reservoirs. However, there are many problems with them. Many factors can 
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introduce errors in pan evaporation measurement, such as debris in water, animal 
activity in and around the pan, pan size, materials employed to construct the pan, 
exposure of the pan, strong winds, and measurement of water depth in the pan (27). 
In practice, empirical formulas have been derived to estimate evaporation on the 
basis of field measurements of evaporation pans and reservoir/lake water balances. 
Those formulas are linked with various weather factors impacting evaporation. As 
the complexity of the empirical methods increases, data requirements to drive the 
equations often make the empirical methods hard to apply for field applications. A 
large number of empirical methods for estimating evaporation based on different 
meteorological inputs have been suggested during the past decades (27). However, 
many of them are not applicable in this study due to their limitations in data 
availability. As a result, only two relevant empirical methods are used in the case 
study (i.e., they are compatible with the available weather measurements), as listed in 
Table 1. In this table, for each formula, E=evaporation rate (mm/day); es=saturation 
vapor pressure (millimeters of Hg); ea=actual vapor pressure (millimeters of Hg); 
U=average wind velocity (km/h) at a height of 2 m above the lake or surrounding 
land areas; and C for deep lake=0.36, low lake=0.5 
 

Table 1. Evaporation Formulas for Lakes and Reservoirs     
References Equation Formula name 

Alizadeh, 2004 ea)-0.03U(esE = Marciano 

Alizadeh, 2004 )()
16

1( as eeCUE −××+= Meyer 

Adaptive Neural-based Fuzzy Inference System (ANFIS) and NNARX 
The adaptive neuro-fuzzy inference system is a new improved tool and a data – driven 
model ling approach for determining the behavior of imprecisely defined complex 
dynamical systems (27) .An ANFIS aims at systematically generating unknown fuzzy 
rules from a given input–output data set (25).  Fig.1 represents a typical ANFIS 
architecture. 

 

Fig. 1. A typical ANFIS architecture (Jang 1993) 

The figure  is based on: 
 Layer 1: every node in this layer is an adaptive node with a node function that may be 
a generalized bell membership function (Equ.1), a Gaussian membership function(Equ. 2), 
or any membership functions  
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Where ai, bi and ci are premise parameters .Also x is the input to node i and Ai is the 
linguistic label (for example, low and high) associated with this node function. 
Premise parameters change the shape of the membership function. Layer 2: every 
node in this layer is a fixed node labeled , representing the firing strength of each rule 
,and is calculated by the fuzzy AND connective ‘product’of the incoming signals by 
using (Equ. 4). 
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Every node in this layer is a fixed node labeled N, representing the normalized firing 
strength of each rule.The ith node calculates the ratio of the ith rule’s firing strength 
to the sum of two rule’s firing strengths by using (Equ. 4) 
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Layer 4: every node in this layer is an adaptive node with a node function (Equ. 5), 
indicating the contribution of the ith rule to wards the over all output. 
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Where pi, qi and ri are consequent parameters. Layer 5: the single node in this layer 
is a fixed node labeled P, indicating the over all output as the summation of all 
incoming signals calculated by (Equ. 6): 
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What should be realized when inspecting the above layer sis principally three 
different types of components that can be adapted as follows (14):  

1. Premise parameters as nonlinear parameters that appear in the input 
membership functions.  

2. Consequent parameters as linear parameters that appear in the rules 
consequents (output weights).  

3. Rule structure that needs to be optimized to achieve a better linguistic 
interpretability. 

In this study, three Gaussian membership functions were used to construct the 
ANFIS model. There are a wide variety of algorithms available for training a 
network and adjusting its weights. In this study, an adaptive technique called 
‘momentum Levenberg–Marquardt’ based on the ‘generalised delta rule’ was 
adopted (25). In this scheme, the adaptive learning rates were used for increasing the 
convergence velocity throughout all ANFIS simulations.  

The ANN is an evolving technique and new progress still being made with 
time. In recent years, a combination of ANN and ARX (Autoregressive Extra Input) 
has gained some popularity in the control field. Traditionally, The ARX model has 
been widely used in control theory for modelling various control processes (22). Its 
simple structure is basically linear and can be described as 
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A(q)y(t)= B(q) u(t-nk)+e(t)                (7) 
 

Where y(t) is the output(evaporation) u(t) is a vector with all the inputs, such as 
wind, temperature, relative humidity and vapour pressure deficit e(t) is the white 
noise, A(q) and B(q) are the polynomials in terms of time shift operator, of the na and 
nb orders respectively and nk is the time delay. This model’s structure is shown in 
Figure 2(a). 

The integrated model of NNARX is a combination of the ANN and ARX. 
Such a model has recently been explored and studied by researchers in other fields 

with some successful results (16). The estimated value of y(t) shown by )|( θty
∧

is 
expressed below:  
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Where f (.) is the nonlinear mapping by ANN, and θ = model parameters. This 
structure is almost the same as the structure in Figure 2(a) but instead of using a 
simple summation block, a neural network structure is replaced as shown in Figure 
3(b). 

 

Fig. 2. (a) The ARX block and (b) The NNARX model block 

Study Area and Data 
The study area is the Sistan plain located in the Southeast of Iran, one of the driest 
regions of Iran and famous for its "120 day wind" (bād-e sad-o-bist-roz), a highly 
persistent dust storm in the summer which blows from north to south with velocities 
of nearly 20 knots. Hirmand River, originated from Afghanistan, is bifurcated into 
two branches when it reaches the Iranian border, namely Parian and Sistan. Sistan is 
the only water supply known in Sistan and Baluchistan province. It is the main 
stream of Hirmand River, which flows through Sistan plain and discharges into the 
natural swamp of Hamun-e-Hirmand (Figure 3). As can be seen in the figure, Sistan 
plain is essentially an inland delta with its major watercourses leading to a series of 
lakes. 

The Sistan delta has a very hot and dry climate. In summer, the temperature 
exceeds 50oC. Rainfall is about 60 mm/year and occurs only in autumn and winter. 
Open water evaporation is very high and is estimated to be 3200 mm/year. Strong 
winds in the region are quite unique and are an important contributing factor for the 
high evaporation. The Chahnime reservoirs are a series of natural depressions used  
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Fig. 3. The Sistan plain and location of the Chahnime reservoirs 
 
Primarily to store water for irrigation. However, they also play an important 

part in attenuating floods. During periods of high flows, water is diverted to these 
reservoirs via an intake and canal which has a capacity of up to 1000 m3 /s. 

The daily weather variables of an automated weather station, Chahnime 
Station of Zabol (latitude 61˚40′ - 61˚49′W, longitude 30˚45′ - 30˚50′ N) operated by 
the IR Sistan and Balochistan Regional Water (IR SBRW) were used in this study. 
The measured daily meteorological data for the Chahnime station were obtained 
from the IR SBRW (http://www.sbrw.ir). The data sample consisted of eleven years 
(2005–2009) of daily records of air temperature (T), wind speed (W), sunshine hours 
(SR), relative humidity (RH) and pan evaporation (E). For the station of interest, the 
first deta of day nine years (1983–2004) were used for training modes and the 
remaining data were used for testing. The daily statistical parameters of the weather 
data are given in Table 2. In the table, the Xmean, Sx, Cv, Csx, Xmax and Xmin 
denote the mean, standard deviation, coefficient of variation, skewedness, maximum 
and minimum of the weather factors, respectively. 

 
Table 2. Correlation matrix for input-output variables of ANFIS and NNARX models 

Station Data 
set Unit Xmean Sx Cv 

(Sx/Xmean)
Csx Xmin Xmax Correlation

with ET 

C h a h n i m e h 

T ﾟC 23.502 9.928 0.422 -0.381 -3.4 39.9 0.843 
RH % 31.262 16.122 0.516 0.920 3.5 92 -0.701 
Wind m/s 6.111 4.046 0.662 0.647 0 21 0.711 
Sun 
shine 
hours 

9.187 2.971 0.323 -1.412 0 13.2 0.392 

ET mm/
day 12.529 8.687 0.693 0.498 0 35.9 1

The last column in Table 2 represents the correlation vector between the 
potential input variables for the models (T, SR, W, and RH) and the output variable 
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(E). In the table, the bold characters highlight the significant factors that affect 
evaporation. Evaporation losses in the Chahnime station are moderately high due to 
high temperature and long sunshine hours that show significantly high variations. 
The data were analyzed with the Minitab program. A similarity matrix was 
constructed using Jaccard’s coefficient of similarity and a dendrogram was obtained 
as shown in Figure 4. The dendrogram analysis revealed a strong link between 
evaporation and the two input variables of wind speed and air temperature. The other 
two weather factors (sunshine hours and relative humidity) played useful but less 
important roles in the evaporation process. It is concluded that for the ANFIS and 
NNARX models, all four variables (air temperature, wind speed, sunshine hours, and 
relative humidity) should be considered as potential inputs. 

 

Fig. 4. The rdendrogram of weather variables of interest 
 

RESULTS 

Among the four meteorological variables considered, it is clear that some would play 
more important roles than others and it is important that only the significant ones are 
used as inputs for the final model. In this study, various combinations of these 
variables were examined to evaluate the impact of each variable. Root mean square 
error (RMSE), index of operation (d), mean absolute error (MAE), mean square error 
(MSE), mean absolute relative error (MARE) and determination coefficient (R2) 
were all used as evaluation criteria. The RMSE represents the deviation between 
simulated values and observed values. The parameter d shows the operation of the 
model which varies between zero and one (best values for d are closer to one). The 
lower MAE values indicate more accurate estimations. MSE and MARE provide 
different types of information about the predictive capabilities of the model. The 
MSE measures the goodness-of-fit relevant to high evaporation values whereas the 
MARE yields a more balanced estimation of the goodness-of-fit at moderate 
evaporation (15). R2 measures the degree to which two variables are linearly related. 
A list of the performance measures are depicted in Table 3. 

Where Oi and Pi are the observed and predicted evaporation at time i,
respectively; ō is the mean of the observed evaporation; and N is the number of data 
points.  
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Table 3. List of the performance criteria 
Performance Criteria Expression 

Root mean square error (RMSE) 
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The combinatory architectures of the ANFS models for the Chahnime station 
are given in Table 4. This table indicates the number of input variable as well as their 
corresponding performance criteria of RMSE, d, MAE, MSE, MARE, and R2. It was 
concluded that the best input combination should include all the variables their order 
of importance being T, SR, W and RH. 

 
Table 4. A summary of statistic analysis for the ANFIS model (testing period) 

 
Various input combinations for NNARX model were also tested and the 

results are displayed in Table 5. It is clear that the performance of NNARX is better 
than ANFS and the input weather factors should include all four variables. 

According to Table 6, the results of empirical equations to simulate 
evaporation and The artificial intelligence( ANFIS and NNARX), simulation models 
can be concluded that evaporation results are more acceptable. 

 
Table 5. A summary of statistic analysis for the NNARX model (testing period) 

 
The evaporation simulations using the final ANFIS and NNARX models are 

showed in Figure 5 and Figure 6. As shown in the figures (and also through Table 4 
& 5), the NNARX estimates are closer to the corresponding observed evaporations 
than the ANFIS model. 

 

Input variables RMSE 
(%)

d MAE (mm/day) MSE(mm2/day2) R2

T 29.19 0.950 2.859 14.47 0.828 
T, W 18.02 0.984 1.733 5.21 0.925 
T, W, SR 16.38 0.980 1.607 5.10 0.930 
T, W, SR and 17.39 0.985 1.655 5.14 0.941 

Input variables RMSE d MAE (mm/day) MSE(mm2/day2) R2

T 20.66 0.977 1.95 7.21 0.899 
T, W 17.08 0.981 1.70 5.14 0.929 

T, W,  SR 17.40 0.985 1.65 5.09 0.94 

T, W,  SR  and 15.83 0.987 1.50 4.23 0.950 
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Table 6. A summary of statistic analysis for the estimated values of evaporation for 
the testing data set of Marciano and Meyer 

 
The evaporation simulations using the final empirical equations (Marciano 

and Meyer ) are shown in Figures 7 and 8. The Meyer estimates are closer to the 
corresponding observed evaporations than the Marciano equation. 
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Fig. 5. Comparison of the observed and estimated evaporation for the testing data with the 
ANFIS model 
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Fig. 6. Comparison of the observed and estimated evaporation for the testing data with the 
NNARX model 
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Fig. 7. Comparison of the observed and estimated evaporation for the testing data with the 
Marciano model 

Formula RMSE d MAE (mm/day) MSE(mm2/day2) R2

Marciano 102.49 -0.86 10.53 173.22 0.68 

Meyer 82.64 0.82 6.86 104.32 0.81 
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Fig. 8. Comparison of the observed and estimated evaporation for the testing data with the 
Meyer model 

 

DISCUSSION AND CONCLUSION 

Overall, the objectives of this study were to evaluate the ANN model for evaporation 
estimation under a hot and dry climate, to improve the ANN model by incorporating 
ARX component, and to investigate the suitable input data for the ANFIS model in 
comparison with those from previously published works. It is quite clear that all the 
planned objectives have been achieved resulting in some interesting findings about 
weather variable selections. This paper is the first attempt in applying this model in a 
Middle Eastern region. It is confirmed that ANFIS works well for a hot and dry place 
such as Iran. The improved performance by integrating ANN and ARX is not only 
novel (the first application of such a model in evaporation research field) but is also 
quite mind broadening since it indicates that there is still room for improving the 
existing ANN model despite its being a universal nonlinear regression tool. Another 
interesting finding in this study is the unique combination of the contributing 
variables.  It has been demonstrated that the important weather factors to be included 
in the model input are: air temperature, sunshine hours, wind speed and relative 
humidity.  This result is different to all others reported in the literature.  In the USA, 
Han and Felker (27), used three weather input variables to estimate evaporation from 
the soil, relative air humidity, air temperature, wind speed. Kumar et al. (19) selected 
six input variables, minimum and maximum temperature, minimum and maximum 
relative humidity, wind speed, and solar radiation. In India with its hot and humid 
climate, Sudheer et al. (30) found that their model worked best with six inputs: 
minimum and maximum temperature, minimum and maximum relative humidity, 
and wind speed (although the improvement of using minimum and maximum 
temperature over the mean temperature was quite small). In Turkey, there were 
mixed results from the published papers. Terz and Kesk (34) investigated the 
evaporation at Lake Egirdir and found that important weather factors were (in order 
of their importance): air temperature, solar radiation and air pressure. It is surprising 
to note that they found the influences of relative humidity and wind were negligible 
but the air pressure was included. One year later, the authors reported that only two 
weather input variables (air temperature and solar radiation) were good enough and 
air pressure was dismissed. Another paper by the authors(33) reported three 
contributing weather factors to be considered in their model: solar radiation, air 
temperature, and relative humidity (wind and air pressure were ignored). The 
capricious choice of the weather variables may indicate that their model input 
selection schemes were not very stable. Tan et al. (32) found the important variables 
were: sola radiation, relative humidity, air temperature and surface wind speed. 
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The results in the testing of NNARX and ANFIS are listed in Table 4, 5, 6 
along with the empirical methods. It is observed that NNARX and ANFIS have 
much better performances than the empirical equations. The best result for the 
empirical formula Marciano is R2 = 0.68 and for Meyer it is R2=0.81 for the test 
data set. In contrast, the R2 is 0.95 for NNARX and 0.94 for ANFIS both 
significantly better than all the three empirical formulas. Between NNARX and 
ANFIS, NNARX has a slightly better performance, which indicates that the fuzzy 
approach has not helped improve the evaporation modeling results. Figs. 5 and 6 
illustrate the scatter plots for all the models (since no training is needed for the 
empirical models, only the estimation results on the testing data are presented in Fig. 
6).This phenomenon could also occur in other climate regions and we hope this 
paper will inspire more researchers to explore this in their future evaporation studies. 
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از سازي تبخير روزانه مدل  تشتك با استفاده
ANFIS  وNN_ARX 

*2 حسين انصاريو∗∗1 پيري جمشيد

و خاك مهندسي آب، گروه1  جمهوري اسلامي ايراندانشگاه زابل،،دانشكده آب
 جمهوري اسلامي ايرانمهندسي آب، دانشگاه فردوسي مشهد، گروه2

و تحول-چكيده و تغيير در هـر حـوزه مختلـف هـاي كيفي منـابع آب تحـت تـأثير فعاليـت كمي
ميهيدرولوژيكي  و حيـاتي دهد رخ كه با توجه به محدوديت منابع آب، جلوگيري از آن بسيار مهـم

ها نيازمند پارامترهاي هاي زيادي ارائه شده است كه بيشتر اين مدل مدل،در زمينه تبخير.باشد مي
آنيا دسترسي ورودي هستند كه  و به آن يا اندازه ها مشكل است و گيري هـا محتـاج صـرف هزينـه

مدلسـازي فرآينـدهاي هاي آماري قوي بـراي در بحث شناسائي سيستم، مدل.باشد زمان زيادي مي
و سري در به طور كلي مدل.هاي زماني وجود دارد اتفاقي كوتـاه مـدت، هـاييبررسـ هاي ديناميك

ميپ استاتيكهاي تر از مدل دقيق ا. دهد اسخ  NN-ARXو ANFISز دو مـدل در اين تحقيـق مـا
ازتركيب( از. استفاده شده است بيني تبخير پيشجهت)يبا ساختار شبكه عصب ARX مدلي پـس

عملكـرد بسـيار ANFISو NNARXهـاي كه روشاجراي برنامه مـــــذكور نتايج تحليل آماري 
 NNARX 0.95=R2،ANFISهـا، اي از داده بـراي تسـت مجموعـه(هـاي تجربـي بهتر از فرمـول 

0.94=R20.81، ماير =R2وMarciano R2=0.68 .( مدلANFIS وNNARX كمـي بهتـر
رسد عملكرد بهتري نسـبت بـه معـادلات تجربـي به نظر مي ANFISو NNARXهاي مدل. است
مي ار انتخاب دادهتر در مورد اين ابز براي به دست آوردن تجربه گسترده.دارند تـوانو اينكه چگونه

.است ها استفاده كرد مطالعات بيشتري مورد نياز در ارزيابي اعتبار سنجي دادهآن را 

 NNARX ،ANFISهاي تجربي، تبخير، فرمول: كليدي هاي واژه
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