Estimation of Zeolite Application Effect on Solute Transport Parameters at Different Soils using HYDRUS-1D Model

M. Fooladi Dorhami*, A. R. Sepaskhah

Department of Water Engineering, Faculty of Agriculture, Shiraz University, Shiraz, I. R. Iran

* Corresponding Author: malihe_foladi@yahoo.com

ARTICLE INFO

Article history:
Received 7 May 2016
Accepted 16 October 2016
Available online 8 July 2017

Keywords:
Chloride
Inverse simulation
HYDRUS-1D
Solute transport parameters
Zeolite

ABSTRACT—Application of models for simulation of solute and pollutants transport in soil can reduce time and costs for remediation process. HYDRUS-1D model was developed to simulate the one-dimensional flow of soil water, heat, solute and viruses in variably saturated–unsaturated porous media. The objective of this investigation is to determine the solute transport parameters in disturbed soil columns with different textures at different rates of zeolite application using HYDRUS-1D model. For this study, the loam soil, the sandy loam soil and the clay loam soil with zeolite application rates of 0 (control) and 8 g kg⁻¹ were used. The approximate concentration of effluents measured by other investigators (0–2.26 mg cm⁻³) is used to determine the transport parameters. The value of immobile water content (θim) decreased and the value of hydrodynamic dispersion coefficient increased in lighter soil texture. According to hydraulic parameters considered and regression equation proposed by other researchers, the decreasing trend of θim is valid with increasing saturated hydraulic conductivity. The predicted dispersivity (λ) in control treatment was in the range of value of λ for disturbed soil reported by other researchers. The trend of solute transport parameters calculated by breakthrough curve using the analytical method by other researchers is similar to the estimated values by the HYDRUS-1D model. The values of Willmott’s agreement index are more than 90% for all soil treatments and normalized root mean square error is about 20% for most treatments that indicated the good accuracy of model for predicting solute transport coefficients.

INTRODUCTION

The environmental pollution is a global problem that occurs as a result of several factors such as soil erosion, indiscriminate disposal of fertilizers, pesticides, sediment and other organic matter and minerals. Solute transport in the soil can affect the quality of surface water and groundwater resources. In recent years, many laboratory and field studies on the solute transport have been conducted (Jaynes et al., 1988). In order to minimize contamination, Abu – zreig and Abu–ashour (2004) investigated Atrazine dissipation using disturbed soil columns under saturated condition in the sandy loam and loam soils. Also, the chloride transport was studied as an inert tracer. The results indicated that the hydrodynamic dispersion coefficient is much higher in sandy loam soil than in loam soil for two solutes. Therefore, the leaching of Atrazine in sandy loam soil is much higher due to macro pores and pore–water velocity. Investigations of solute transport are important in many processes of edaphology and water, such as contamination of soil and groundwater resources and leaching of nutrient in the soil. Describing these processes is required to gain a deeper knowledge of the modeling of solute transport in soil. A wide range of models exist for simulation of solute transport in soil (van Genuchten and Wagenet,1989). Solute transport is expressed by different mathematical equations. The knowledge of solute transport behavior depends on the accurate determination of the transport parameters in the equation. There are several methods to determine or estimate the solute transport parameters. Inverse estimation of the solute transport parameters is mainly limited to the one-dimensional analysis in the laboratory. By application of models, it is possible to predict the movement of solutes and pollutants in soil with less expensive and less time consuming experiments. HYDRUS-1D model is used to simulate the one-dimensional flow, heat and solute in porous media at saturated-unsaturated conditions. Furthermore, this model takes to account all processes such as different initial conditions, boundary input and output of water and solute and root water uptake (Simunek et al., 1998). Previous studies have shown that water flow and solute transport processes are influenced by zeolite application (Pepper, et al., 1982; Sepaskhah and Yousefi, 2007), soil type (Tabarzad et al., 2011; Saadat et al., 2012), field and laboratory experiments (Abbasi et al., 2003), undisturbed and disturbed soils (Tabarzad et al., 2011; Saadat et al., 2012) and initial water content.
and application of tracer type (Katterer et al., 2001). Zeolite application increased the pore water velocity and prevented the leaching ammonium under saturated condition (Sepaskhah and Yousefi, 2007; Moradzadeh et al., 2014), and application of zeolite to sandy soil increased the soil water retention and decreased leaching of ammonium and nitrate (Pepper, 1982). Tabarzad et al. (2011) investigated mass exchange coefficient (α) and immobile water content (θim) of undisturbed soils with different textures in laboratory and saturated condition. A solution of CaCl₂ was used as an input tracer. Results indicated that the value of α has decreased and θim has increased in heavier soil textures. Furthermore, the coupled of HYDRUS-1D and PHREEQC models was applied to simulate the transport of heavy metals and other substances in the soil. The results of simulation of long-term leaching of heavy metals (Cd, Zn, Pb), soil dominant cations and chloride in a contaminated soil profile by using the coupled model indicated that it can be used in the saturated and unsaturated conditions (Jacques et al., 2002). Moradi et al. (2005) simulated Cd profile in the lime soil treated with sewage sludge after 185 and 617 days using MACRO and HYDRUS models. Results of a recent study indicated that the results of Macro model can be in good agreement with observations. In order to study the effects of potassium zeolite application on nitrate and ammonium ions sorption and retention, a research has been conducted in a sandy loam soil under saturated condition in which Ca-K-zeolite application increased the pore water velocity, and prevented the leaching of ammonium. Also, solute transport parameters were estimated with physical equilibrium convection-dispersion (CDE) and physical non-equilibrium mobile-immobile (MIM) transport models inversely using HYDRUS-1D code (Moradzadeh et al., 2014). The MIM method predicted the observed breakthrough curves better than the CDE model for chloride transport in porous media (Jacques et al., 2002). Moreover, HYDRUS-1D model was applied for simulating the nitrate leaching and deep percolation from furrow irrigation fields with a very high accuracy (Tafteh and Sepaskhah, 2012). Abbasi et al. (2003) estimated the solute transport parameters and the soil hydraulic properties under transient conditions. They estimated the solute transport parameters in CDE and MIM transport models inversely by HYDRUS-2D. Results showed that the value of θim did not play an important role in the optimization process. Estimated values of α and θim were larger than those reported for laboratory soil columns by HYDRUS-1D model. Studying solute transport and water flow is necessary in Iran, where farmers are using large amounts of fertilizers, especially nitrogen fertilizers that are easily transported in soil with heavy irrigation and low efficiency. That being so, the objective of this investigation was to determine the solute transport parameters of chloride in disturbed soil columns with clay loam, loam and sandy loam soils at the zeolite application rates of 0 and 8 g kg⁻¹ soil using an inverse method by HYDRUS-1D model.

MATERIALS AND METHODS

Experiments

The experiment was carried out as a complete randomized block design with three replications at Irrigation Laboratory, Department of Water Engineering, College of Agriculture of Shiraz University (I. R. of Iran). A loam, sandy loam and clay loam soil with zeolite application rates of 0 (control) and 8 g kg⁻¹ were used. The data used for this research were obtained from a research project reported by Saadat et al. (2012). The physical properties of the soils are listed in Table 1. Those researchers intended to determine the effects of the application rate of zeolite on θim, α and hydrodynamic dispersion coefficient (Dα) (Saadat et al., 2012). The experimental set up is shown in Fig.1. The used columns in this study were PVC tubes of an inside diameter of 10.5 cm and height of 50 cm. According to soil treatments, the mixture of different soils and zeolite application rates were placed in columns. At the specified height from the PVC tube bottom, two holes were made for inlet and outlet of water. By this method, a constant water height of 1.0 cm was held on the soil surface. A stainless still screen was used as the soil support at the bottom of the column. Before re-packing the soil in the column, it was air-dried and passed through a 2-mm screen and mixed with zeolite at application rates of 0 and 8 g kg⁻¹ soil. Then, each soil column was slowly saturated from bottom in the laboratory. A solution of CaCl₂ at salinity of 6 and 7 dS m⁻¹ was prepared for the input tracer. Effluent solutions were collected in small plastic bottles at a fixed volume aliquot.

The hydraulic conductivity was determined by the outflow volume at different times with a water head at the surface soil (Fig. 1). The measured salinity of the outflow was converted to the concentration of Cl⁻ by using the relationship between salt concentration (meq L⁻¹)-salinity (dS m⁻¹) for CaCl₂ solution (Richards, 1954). The soil saturated hydraulic conductivity (Ks) was determined using Darcy’s law. Furthermore, the values of initial, minimum and maximum of dispersivity (λ), α and θim were defined in the model for different zeolite treatments and soil textures. Moreover, diffusion coefficient in water (D) was used in the model as the constant value.
Table 1. Physical properties* of the experimental soils

<table>
<thead>
<tr>
<th>Texture</th>
<th>Depth</th>
<th>Sand</th>
<th>Silt</th>
<th>Clay</th>
<th>Porosity</th>
<th>Bulk density</th>
<th>0,</th>
<th>K,</th>
<th>Depth of soil column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>0-20</td>
<td>40</td>
<td>47</td>
<td>13</td>
<td>44</td>
<td>1.24</td>
<td>0.401</td>
<td>0.077</td>
<td>42</td>
</tr>
<tr>
<td>Clay loam</td>
<td>20-55</td>
<td>40</td>
<td>36</td>
<td>24</td>
<td>52</td>
<td>1.27</td>
<td>0.461</td>
<td>0.053</td>
<td>30</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0-30</td>
<td>71</td>
<td>19</td>
<td>10</td>
<td>43</td>
<td>1.52</td>
<td>0.384</td>
<td>0.090</td>
<td>30</td>
</tr>
</tbody>
</table>

*S: Saturated water content and K,: Saturated hydraulic conductivity

\[K (h) = K_s S_e \left[1 - \left(1 - \frac{1}{e m} \right)^m \right]^2 \]

where \(S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r} \)

\[m = 1 - \frac{1}{n} \]

Mathematical Models and Inverse Solution

Water flow

One-dimensional uniform (equilibrium) water movement in porous medium is described by the Richards equation as follows:

\[\frac{\partial \theta (h)}{\partial t} = \frac{\partial}{\partial z} \left[K (h) \left(\frac{\partial h}{\partial z} + \cos \phi \right) \right] \]

where \(h \) is pressure head (L), \(\theta(h) \), soil volumetric water content (L\(^{-1}\)L\(^{-3}\)), \(t \), time (T), \(z \), spatial coordinate (L) (positive upward), \(\phi \), angle between the flow direction and the vertical axis (i.e., \(\phi = 0^\circ \) for vertical flow, \(90^\circ \) for horizontal flow), and \(K(h) \), unsaturated hydraulic conductivity function (LT\(^{-1}\)).

Soil Hydraulic Properties

The soil water retention curve, \(\theta_h \), was described using the closed-form equation of van Genuchten (1980) and the unsaturated hydraulic conductivity, \(K(h) \), using the pore-size distribution model of Mualem (1976) as follows:

\[\theta_h = \theta_r + \frac{\theta_s - \theta_r}{1 + (\beta h)^n} \]

Governing Solute Transport Equations

Solute transport is an important issue. The mobile-immobile model (MIM) is used to study the transport of solutes. In this model, space of water-filled pore is divided into two regions; the mobile water content, where solute transport is described by convection and dispersion, and the immobile water content, where solute is moved just by diffusion. MIM can be written as follows (van Genuchten and Wierenga, 1976):

\[\theta_m \frac{\partial c_m}{\partial t} + \theta_{im} \frac{\partial c_{im}}{\partial t} = D_h \theta_m \frac{\partial^2 c_m}{\partial z^2} - q_m \frac{\partial c_m}{\partial z} \]

\[\theta_{im} \frac{\partial c_{im}}{\partial t} = \alpha (c_m - c_{im}) \]

where \(\theta \) represents total volumetric soil water content (L\(^{-1}\)L\(^{-3}\)), \(\theta_m \) and \(\theta_{im} \), mobile and immobile soil water content (L\(^{-1}\)L\(^{-3}\)), respectively, \(c_m \) and \(c_{im} \), concentrations of solute in mobile and immobile domains (ML\(^{-2}\)), respectively, \(t \), time (T), \(\alpha \), mass exchange coefficient between mobile and immobile domains (T\(^{-1}\)), \(D_h \), hydrodynamic dispersion coefficient (L\(^2\)T\(^{-1}\)).

Analytical Method

One of the problems for using MIM model is estimating necessary parameters i.e. \(\theta_{im} \), \(\alpha \) and \(D_h \). Clothier et al. (1992) assumed that if the concentration is stable, \(\alpha \) can be ignored, so \(\theta_{im} \) can be estimated by the final relative
concentration. Jaynes et al. (1995) determined θ_{im} and α by applying a sequence of tracer:

$$
\Ln \left(1 - \frac{c}{c_o}\right) = -\alpha \frac{t}{\theta_{im}} + \Ln \left(\frac{\theta_{im}}{\theta}\right)
$$

(9)

where t represents the cumulative time that tracer was applied (T), c/c_o, relative concentration (-), and c, occupant soil solution concentration. θ_{im} and α can be estimated by plotting $\Ln(1-c/c_o)$ vs t. (Jaynes et al., 1995).

By considering the advection – dispersion equation (CDE), D_h is determined as follows (Kirkham and Powers, 1972):

$$
D_h = v L / (4 \pi S^2)
$$

(10)

where S is the slope of tangent line on BTC, at reflection point (T), v, the mean pore water velocity (L T$^{-1}$) and L, the length of soil column (L).

Boundary and Initial Conditions

Solving Eq. (1) requires defining boundary condition (BC). In this study, the constant pressure head and the seepage face were used as the upper and lower BC, respectively. The water pressure head of 1 cm was applied to the soil column during all experiments. The seepage face is often applied to laboratory soil columns when the bottom of the soil column is exposed to the atmosphere (i.e. gravity drainage of a finite soil column). However, when the lower end of the soil profile becomes saturated, a zero pressure head is imposed at the lower boundary and the outflow is calculated accordingly. The initial condition was determined according to the soil water pressure heads that were considered constant during the experiment at the upper and lower ends of the soil column.

The solution of Eq. (6) requires the initial concentration and BC to be given. Therefore, in the model application, the concentration of Cl$^-$ entering the soil column was used as the upper BC. The zero concentration gradient was used for lower BC because the soil columns were in contact with air at the bottom. The initial condition was determined according to the liquid phase concentrations (mass of solute/volume of water) which is used because the solute is dissolved in water and added to the soil.

Inverse Solution

The inverse solution was based on numerical solution of the MIM transport model and the Richards equation inversely using the Levenberg-Marquardt optimization algorithm. The optimization of parameters is an indirect method of simulating solute transport parameters from the data of solute transport experiment. Inverse methods are generally based on minimizing the objective function, which represents differences between the measured variables and the corresponding model prediction (e.g., concentration at different times in flow domain). The solute transport parameters, α, θ_{im}, and λ coefficient are simulated by HYDRUS-1D using inverse method. After defining initial values, the model changes each parameter and then, sum of squares (SSQ) is computed and the variables are obtained after SSQ takes a minimum value. SSQ is a criterion to finish the running program which is calculated as follows (Moradzadeh et al., 2014):

$$
SSQ = \sum_{i=1}^{n} \left(X_{i_{obs}} - X_{i_{sim}} \right)^2
$$

(11)

where $X_{i_{obs}}$ and $X_{i_{sim}}$ are values of observation and simulated concentrations of chloride by model, respectively.

In simulation with the HYDRUS-1D model, the soil profile was represented by 101 elements of equal length. Initial estimates of the assumed unknown solute transport parameters are then iteratively adjusted and improved by minimization procedure until a desired degree of precision is obtained. The chloride concentration was used in the inverse optimization to estimate simultaneously the MIM transport parameters while other parameters were fixed during the optimization.

Statistical Evaluations

Normalized root mean square error (NRMSE) and Willmott’s index of agreement (d) were used to evaluate the model accuracy as follows:

$$
d = 1 - \frac{\sum_{i=1}^{n} \left(P_i - O_i\right)^2}{\sum_{i=1}^{n} \left(P_i + O_i\right)^2}
$$

(12)

$$
NRMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(P_i - O_i\right)^2}{\sum_{i=1}^{n} \left(O_i\right)^2}} \times 100
$$

(13)

where P, O, \bar{O} and n represent values of predicted, measured, mean measured and number of observations, respectively (Jamieson et al., 1991).

RESULTS AND DISCUSSION

HYDRUS-1D Model Calibration

For model calibration, the data of breakthrough curves (BTC) for one replication in each treatment are used in different solis.

Loam Soil

The BTC of the observed data and those simulated by the model are presented in Fig. 2 at different zeolite application rates. Results of the solute transport parameters by the model at different treatments are shown in Table 2. Due to the low value of SSQ (Table 2), the measured values are in good agreement with the predicted values. In our study, it was observed that increasing the zeolite application resulted in the decrease of values of θ_{im} and α. The maximum and
minimum values of θ_{im} were 0.211 cm3 cm$^{-3}$ and 0.059 cm3 cm$^{-3}$, respectively. The maximum and minimum values of D_h were 2.26 cm2 min$^{-1}$ at rate of 8 g kg$^{-1}$ soil and 0.037 cm2 min$^{-1}$ at control, respectively. Results of statistical index for the regression between the observed and estimated values of Cl concentration are listed in Table 3 during the model calibration. The coefficient of determination (R^2) for the regression lines were higher than 0.90 for all treatments. A high accuracy of the prediction is obtained for control treatment. The values of d were higher than 0.97 for all treatments, which indicated a high accuracy of the prediction by the HYDRUS-1D model. The values of NRMSE were less than 20% for all treatments. Furthermore, according to the average of predicted and measured values, the maximum difference was observed at 8 g kg$^{-1}$ soil zeolite application rate.

![Fig. 2. Simulation of leaching using MIM model for one replicate of loam soil at zeolite application rates: (a) 0 g kg$^{-1}$; (b) 8 g kg$^{-1}$](image)

Clay Loam Soil

The BTCs of the observed data and the ones simulated by the model are presented in Fig. 3 at different zeolite application rates. Results of the solute transport parameters by the model at different treatments are shown in Table 2. Due to low SSQ values (Table 2), the measured values were in good agreement with the predicted values. It was found that by increasing the zeolite application, the values of θ_{im} and α decreased. The maximum and minimum values of θ_{im} were 0.134 cm3 cm$^{-3}$ and 0.083 cm3 cm$^{-3}$, respectively. The maximum and minimum values of D_h were 0.0915 cm2 min$^{-1}$ at rate of 8 g kg$^{-1}$ soil and 0.0219 cm2 min$^{-1}$ at rate of 0 g kg$^{-1}$ soil, respectively. The regression between the observed and estimated values of Cl concentration and the results of statistical index are listed in Table 3. The R^2 values for the regression lines were higher than 0.95 for all treatments. A high accuracy of the prediction was obtained for zeolite application rate of 8 g kg$^{-1}$. The values of d were higher than 0.98 for all treatments, which indicated a high accuracy of the prediction by HYDRUS-1D model. The values of NRMSE were less than 20% for all treatments. According to R^2 values (Table 3), the accuracy of the model is higher for zeolite application rate of 8 g kg$^{-1}$.

![Fig. 3. Simulation of leaching using MIM model for one replicate of clay loam soil at zeolite application rates: (a) 0 g kg$^{-1}$; (b) 8 g kg$^{-1}$](image)

Table 2. The average of solute transport parametersa at different treatments of different soils predicted by HYDRUS-1D model

<table>
<thead>
<tr>
<th>Zeolite application (g kg$^{-1}$)</th>
<th>SSQ</th>
<th>λ (cm)</th>
<th>A (min$^{-1}$)</th>
<th>θ_{im} (cm3 cm$^{-3}$)</th>
<th>v (cm min$^{-1}$)</th>
<th>D_h (cm2 min$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>0</td>
<td>0.131</td>
<td>0.25</td>
<td>0.04451</td>
<td>0.211</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.167</td>
<td>8.119</td>
<td>0.000001</td>
<td>0.059</td>
<td>0.278</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0</td>
<td>0.067</td>
<td>0.215</td>
<td>0.0014</td>
<td>0.134</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.083</td>
<td>0.57</td>
<td>0.0005</td>
<td>0.083</td>
<td>0.161</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0</td>
<td>0.184</td>
<td>2.29</td>
<td>0.0000000001</td>
<td>0.053</td>
<td>0.209</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.150</td>
<td>16.03</td>
<td>0.000002</td>
<td>0.007</td>
<td>0.395</td>
</tr>
</tbody>
</table>

a: Dispersivity, α: Mass exchange coefficient, θ_{im}: Immobile water content, D_h: Hydrodynamic dispersion coefficient and v: average of pore water velocity
Table 3. Results of statistical evaluations for HYDRUS-1D model calibration for one replicate for different soils

| Zeolite application (g kg⁻¹) | Number of data | Eq of linear regression* | Average of observation | Average of predicted | NRMSE | d*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33</td>
<td>(c_{\text{Sim}}=0.764 \cdot c_{\text{Obs}}+0.273) R²=0.95</td>
<td>1.25</td>
<td>1.23</td>
<td>19.9</td>
<td>97.2</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>(c_{\text{Sim}}=0.668 \cdot c_{\text{Obs}}+0.408) R²=0.90</td>
<td>1.38</td>
<td>1.33</td>
<td>28.2</td>
<td>94.1</td>
</tr>
<tr>
<td>Clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>24</td>
<td>(c_{\text{Sim}}=0.808 \cdot c_{\text{Obs}}+0.202) R²=0.96</td>
<td>1.07</td>
<td>1.06</td>
<td>19.8</td>
<td>98.0</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>(c_{\text{Sim}}=0.860 \cdot c_{\text{Obs}}+0.145) R²=0.98</td>
<td>1.14</td>
<td>1.13</td>
<td>12.7</td>
<td>99.7</td>
</tr>
<tr>
<td>Sandy loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>22</td>
<td>(c_{\text{Sim}}=0.818 \cdot c_{\text{Obs}}+0.100) R²=0.91</td>
<td>1.15</td>
<td>1.05</td>
<td>24.7</td>
<td>96.6</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>(c_{\text{Sim}}=0.898 \cdot c_{\text{Obs}}+0.030) R²=0.97</td>
<td>1.47</td>
<td>1.3</td>
<td>13.2</td>
<td>98.4</td>
</tr>
</tbody>
</table>

*\(c_{\text{obs}}\) and \(c_{\text{sim}}\) are the concentration of measured and predicted (mg cm⁻³) by HYDRUS-1D model, respectively. d is the index of agreement.

Sandy Loam Soil

The BTC of the observed data and those simulated by the model are presented in Fig. 4 at different zeolite application rates. Results of the solute transport parameters by the model at different treatments are shown in Table 2. Due to low values of SSQ (Table 2), the measured values were in good agreement with the predicted values. Results indicated that by increasing the zeolite application rates, the values of \(\theta_{\text{im}}\) and \(a\) decreased. The maximum and minimum values of \(\theta_{\text{im}}\) were 0.0531 cm⁻¹ cm³ and 0.0066 cm⁻¹ cm³, respectively. The maximum and minimum values of \(D_a\) were 6.33 cm² min⁻¹ at rate of 8 g kg⁻¹ soil and 0.4789 cm² min⁻¹ at rate of 0 g kg⁻¹ soil, respectively. The regression between the observed and estimated values of Cl concentration, and the results of statistical index are listed in Table 3. The \(R^2\) values for the regression lines were higher than 0.9 for all treatments. A high accuracy of the prediction was obtained for 8 g kg⁻¹ zeolite application rate. The values of \(d\) were higher than 0.95 for all treatments, which indicated a high accuracy of the prediction by HYDRUS-1D model. According to \(R^2\) values (Table 3), the accuracy of the model was higher for 8 g kg⁻¹ zeolite application rate.

It is possible that the physical soil condition was considered in a way which was not completely real and the input coefficients into the model for water and solute transport did not match the soil condition. Actually, the average of coefficients was considered for the model to achieve the best fit. Therefore, the fitness may be overestimated or underestimated.

In different conditions, the soil column shows different values of the chloride concentration. At the beginning of the curve, the prediction of concentration is overestimated and at the end of the curve, it is underestimated. Also, in the phenomenon of solute transport in structured soil, at the beginning of the transportation, the water transport is faster because of macropores presence and greater \(D_a\), so the model overestimates. At the end of the curve, diffusion and dispersion phenomenon and the difference in concentration in pores because of macropores in the soil have less effect on the transportation and the soil has achieved a steady state condition.

In addition, a little air may be caupturel in the soil column when it is saturated. Actually, the model assumes that the soil is completely saturated although it is not the case. There fore, at first, the model overestimates, but the soil is going to be gradually saturated by transporting action through the soil column and achieving steady state. As a result, the estimation at the end is better.

![Fig. 4. Simulation of leaching using MIM model for one replicate of sandy loam soil at zeolite application rates: (a) 0 g kg⁻¹; (b) 8 g kg⁻¹.](image)

Comparison Between the Analytical Method and HYDRUS-1D Model

The reported values of \(a\) and \(\theta_{\text{im}}\) (Saadat et al., 2012) that were determined by using the analytical method and the predicted values by HYDRUS-1D model are shown in Table 4. The model predicted values of \(\theta_{\text{im}}\) showed closer values in sandy loam and loam soils compared with the analytical method. It was shown that \(\theta_{\text{im}}\) was significantly reduced by about 1.5% and 30% compared with the analytical method in loam soil at zeolite application rates of 0 and 8 g kg⁻¹ soil, respectively.
Also, it was indicated that θ_{im} was significantly reduced by about 25% and 24% compared with the analytical method in clay loam soil at zeolite application rates of 0 and 8 g kg\(^{-1}\) soil, respectively.

Table 4. Solute transport parameters\(^a\) determined using analytical method as reported by Saadat et al., (2012) and predicted by HYDRUS-1D model

<table>
<thead>
<tr>
<th>Zeolite application</th>
<th>α</th>
<th>θ_{im}</th>
<th>α</th>
<th>θ_{im}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>0</td>
<td>0.005</td>
<td>0.211</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>0.000001</td>
<td>0.059</td>
<td>0.0007</td>
<td>0.085</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0</td>
<td>0.0014</td>
<td>0.134</td>
<td>0.0009</td>
</tr>
<tr>
<td>8</td>
<td>0.0005</td>
<td>0.083</td>
<td>0.0007</td>
<td>0.110</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0</td>
<td>0.000001</td>
<td>0.053</td>
<td>0.0002</td>
</tr>
<tr>
<td>8</td>
<td>0.000002</td>
<td>0.007</td>
<td>0.0002</td>
<td>0.020</td>
</tr>
</tbody>
</table>

\(a\): Mass exchange coefficient; θ_{im}: Immobile water content

θ_{im} was significantly different by about 12% and 67% compared with the analytical method in sandy loam soil at zeolite application rates of 0 and 8 g kg\(^{-1}\) soil, respectively. Overall, the HYDRUS-1D model was slightly more accurate in the light soil. The simulated θ_{im} using the model was similar to the values reported by Tabarzad et al. (2011) at control treatment at heavy soil texture. According to the results, by using the HYDRUS-1D model, the inverse method was not acceptable for estimation of α at 8 g kg\(^{-1}\) zeolite application rate at different soils. Therefore, for this parameter, the experimental measurement is very important for determining solute transport parameter.

Effect of Zeolite on Solute Transport Parameters

Results showed that the values of D_h generally increased due to zeolite application in different soil textures. This is consistent with the results reported by Moradzadeh et al. (2014) for ammonium and nitrate ion at different zeolite application rates. The variation of D_h in different soil textures with the zeolite application rates was proportional to the variations of the pore water velocity. The maximum value of D_h was observed in sandy loam soil with the maximum of pore water velocity. The values of D_h ranged between 0.022 and 6.33 cm\(^2\) min\(^{-1}\) in different soil textures. Results showed that the values of θ_{im} and α generally decreased due to zeolite application. The values of θ_{im} ranged between 0.0066 and 0.2108 cm\(^3\) cm\(^{-3}\) in different soil textures. The changes of D_h value are related to soil clay content. The soil texture is an important factor influencing the solute dispersion. The values of λ simulated by using the HYDRUS-1D model at control treatment are closer to the values of λ reported by other researchers in disturbed soil.

HYDRUS-1D Model Validation

After calibration of the HYDRUS-1D model by inverse method and fitting the solute transport parameters, the BTC, of other two replications for each treatment were used for model validation as first and second validation. For validation, the model was run using the fitted solute transport parameters and the results were compared with the measured BTC, by a linear relationship and d values. The results of model validation are shown in Table 5 for different soils. During the model validation, the slope of line (a) was less than 1.0 for all treatments, indicating that the estimated values were less than the observed values of concentration. Generally, the values of R^2 for loam and clay loam soils were higher than those for sandy loam soil for all treatments. These values for model validation varied between 0.89 and 0.99. Regarding the model validation indices, BTC, prediction for clay loam and loam soils were more accurate than that of BTC, for sandy loam soil. Results of model validation are presented in Figs. 5 to 10 at different zeolite application rates.

Table 5. Results of statistical evaluation\(^a\) for HYDRUS-1D model validation for different soils

<table>
<thead>
<tr>
<th>Zeolite application</th>
<th>First validation</th>
<th>Second validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g kg(^{-1}))</td>
<td>a</td>
<td>R^2</td>
</tr>
<tr>
<td>Loam</td>
<td>0.728</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>0.670</td>
<td>0.90</td>
</tr>
<tr>
<td>Clay loam</td>
<td>0.811</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>0.786</td>
<td>0.95</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>0.702</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>0.758</td>
<td>0.91</td>
</tr>
</tbody>
</table>

\(a\): The slope of fitting line between predicted and observed values; R^2: The coefficient of determination; d: Index of agreement; NRMSE: Normalized root mean square error
Fig. 5. Measured versus predicted (using MIM transport model) for loam soil at zeolite application rate 0 g kg\(^{-1}\)

Fig. 6. Measured versus predicted (using MIM transport model) for loam soil at zeolite application rate 8 g kg\(^{-1}\)

Fig. 7. Measured versus predicted (using MIM transport model) for clay loam soil at zeolite application rates 0 g kg\(^{-1}\)

Fig. 8. Measured versus predicted (using MIM transport model) for clay loam soil at zeolite application rates 8 g kg\(^{-1}\)
CONCLUSIONS

Results of this study showed that the maximum value of θ_{im} occurred in clay loam soil. They also indicated that the value of θ_{im} decreased when the soil texture became lighter (sandy loam). According to hydraulic parameters and the regression equation reported by other researchers, the decreasing trend of θ_{im} is consistent with the increase of observed hydraulic conductivity. The θ_{im} simulated by using the HYDRUS-1D model at control treatment was similar to the values of θ_{im} reported by other researchers in undisturbed soil. The values of θ_{im} by using the analytical method reported by other researchers was higher than those simulated by using the HYDRUS-1D model. The value of D_h increased in coarse soil textures. The trend of increase or decrease in experimental results was similar to the estimated parameters by using the HYDRUS-1D model with the calculated solute transport parameters by using the BTCc in the analytical method. The values of d were higher than 0.9 for all treatments in loam, clay loam, and sandy loam soils, which indicated a good accuracy of the prediction by HYDRUS-1D model. Results showed that the HYDRUS-1D model underestimated a parameter at 8 g kg$^{-1}$ zeolite application rate.

ACKNOWLEDGEMENTS

This research was supported in part by a research project funded by Grant no. 95-GR-AGR 42 of Shiraz University Research Council, Droughts National Research Institute, and the Center of Excellence for On-Farm Water Management.
REFERENCES

چکیده- استفاده از مدلهایی در پیش‌بینی حرکت املاح و آلاینده‌ها در خاک، می‌تواند موجب صرف‌جویی زیاد در وقت و هزینه‌ها گردد. مدل نرم‌افزاری Hydrus-1D به منظور شبیه‌سازی یک بعدی حرکت آب، حرارت، املاح و ویروس‌ها در شرایط مختلف ورودیی می‌تواند در توسعه پایه‌ای استفاده‌های این هدف از انجام این تحقیق، تعبیه ضریب انتقال در سطح‌های خاک دست‌خورده در پایتخت می‌باشد. در انجام این پژوهش به‌منظور نمایش سه نوع خاک لویی، لوی شنی و لوی رس در دو تیمار صفر و 8 گرم زئولیت در هر کیلگرم خاک استفاده شد. برای تعیین ضریب انتقال از طریق‌های زه‌گیری داخلی گردشی شده توسط دیگر سه نوع خاک لویی، لوی شنی و لوی رس در دو تیمار صفر و 8 گرم زئولیت در هر کیلگرم خاک استفاده شد. در این تحقیق، با استفاده از پکیج SPSS و نرم‌افزار Hydrus-1D مقدار ضریب پراکندگی هیدرو‌پویش‌هایی را ارزیابی می‌کرد. با توجه به پارامترهای هیدروپویشی در نظر گرفته شده و با استفاده از روش‌های مختلف محاسباتی، روند کاهشی مقدار ضریب بی‌حجاب در شرایط مختلف با کاهش هدایت هیدروفیلی ایجاد می‌شود. هم‌هایی داشته‌اند، موضوعات اصلی این تحقیق، تعیین ضریب پراکندگی، برآورد شده در تیمار بدون زئولیت در محدوده مقدار بسته آمده این در خاک دست‌خورده گزارش شده توسط محاسبه دیگر می‌باشد. روند تغییرات پارامترهای انتقال املاح محاسبه شده از روی منحنی درود روش حل‌اللهی با استفاده از نرم‌افزار Hydrus-1D محاسبه شده است. مقدار NRMSE مقدار شاخص توافق ویلیام از همه تیمارها به‌صورت بیش از 70% و مقدار شاخص NRMSE در آکریگ تیمارها به‌صورت بیش از 60% می‌باشد. که این نشان دهنده دقت تابع به‌عنوان ضریب انتقال املاحی بوده‌است.