The long-term effect of land-use change from forest to cropland in different slope aspects on soil chemical and physiological properties

Document Type : Research Paper

Authors

1 Soil Science Department, Faculty of Agriculture, Razi University, Kermanshah, I.R., Iran.

2 Simon Fraser University, 8888 University Dr. Burnaby V5A 1S6, British Columbia, Canada.

3 Soil Science Department, Faculty of Agriculture, Razi University, Kermanshah, I.R., Iran

10.22099/iar.2023.45013.1515

Abstract

Land-use change from forest to arable lands may have a major significance on soil processes, properties, and functioning. This research investigated the influence of long-term land-use change from untouched forests to arable lands under northern and southern slope aspects on soil physical and chemical properties. Six regions of the Zagros area in the west of Iran, where the increasing trend of forest to agricultural land conversion has occurred during the last decades, were selected for this study. Composite soil samples were collected from the 0-20 cm depth in both the northern and southern slopes of native forests and their related cultivated areas. The highest dispersible clay and soil bulk density and the lowest aggregate stability were observed in cultivated areas. Soil organic carbon and total N declined in response to the land-use change from forest to cultivated areas in all study areas. The highest amounts of soil organic carbon, total N, C/N ratio, and available P were observed in northern slopes compared with southern slopes in some studied regions. In general, the conversion of natural forests to agricultural cropping systems resulted in soil quality declining. However, the deterioration intensity in the northern and southern slope aspects was similar approximately.

Keywords


Article Title [Persian]

تأثیر طولانی‌مدت تغییر کاربری اراضی از جنگل به زمین زراعی در جهت‌های مختلف شیب بر ویژگی‌های شیمیایی و فیزیولوژیکی خاک

Authors [Persian]

  • علی بهشتی آل آقا 1
  • مهین کریمی 2
  • فاطمه رخش 3
1 گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ج.ا. ایران
2 دانشگاه سایمون فریزر، دانشگاه دکتر برنابی، بریتیش کلمبیا، کانادا
3 گروه علوم و مهندسی خاک، دانشگاه رازی، کرمانشاه، ج.ا. ایران
Abstract [Persian]

تغییر کاربری زمین از جنگل به زمین‌های زراعی ممکن است بر فرآیندها، خواص و عملکرد خاک تأثیر بسزایی داشته باشد. این تحقیق به‌منظور بررسی تأثیر تغییر کاربری طولانی‌مدت از جنگل‌های بکر به زمین‌های زراعی در شیب‌های شمالی و جنوبی بر ویژگی‌های فیزیکی و شیمیایی خاک انجام شد. شش منطقه از ناحیه زاگرس در غرب ایران که روند رشد جنگل به اراضی کشاورزی در دهه‌های اخیر در آن‌ها رخ داده است، برای این مطالعه انتخاب شدند. نمونه‌های مرکب خاک از عمق صفر تا 20 سانتی‌متری در دامنه‌های شمالی و جنوبی جنگل‌های بومی و مناطق زیر کشت مرتبط با آن‌ها جمع‌آوری شدند. بیشترین مقدار رس قابل انتشار و چگالی ظاهری خاک و کمترین پایداری خاکدانه در زمین‌های کشاورزی مشاهده شد. کربن آلی خاک، نیتروژن کل و ذخایر کربن و نیتروژن کل در پاسخ به تغییر کاربری زمین از جنگل به زمین کشاورزی در تمام مناطق مورد مطالعه کاهش یافت. مقادیر بالاتر کربن آلی خاک، نیتروژن کل، نسبتC/N و فسفر قابل دسترس در دامنه‌های شمالی در مقایسه با دامنه‌های جنوبی در برخی از مناطق مورد مطالعه مشاهده شد. به‌طورکلی، تبدیل جنگل‌های طبیعی به سیستم‌های کشت کشاورزی منجر به کاهش کیفیت خاک شد. با این حال، شدت زوال در جهت های شیب شمالی و جنوبی تقریباً مشابه بود.

Keywords [Persian]

  • جنگل
  • جهت شیب
  • زمین زراعی
  • سیستم‌ها‌ی خاک‌ورزی
  • کیفیت خاک
Adeel, Z. (2008). Findings of the global desertification assessment by the millennium ecosystem assessment– a perspective for better managing scientific knowledge. In Lee, C., and Schaaf, T. (eds). The future of drylands (pp. 677-685). Springer, , Dordrecht.
https://doi.org/10.1007/978-1-4020-6970-3_57
Ayoubi, S., Mirbagheri, Z., & Mosaddeghi, M. R. (2020). Soil organic carbon physical fractions and aggregate stability influenced by land use in humid region of northern Iran. International Agrophysics, 34(3) 343-353. https://doi.org/10.31545/intagr/125620
Balesdent, J., Chenu, C., & Balabane, M. (2000). Relationship of soil organic matter dynamics to physical protection and tillage. Soil and Tillage Research, 53(3-4), 215-230.
Bastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. Geoderma, 147(3-4), 159-171. https://doi.org/10.1016/j.geoderma.2008.08.007
Bayat, H., Sheklabadi, M., Moradhaseli, M., & Ebrahimi, E. (2017). Effects of slope aspect, grazing, and sampling position on the soil penetration resistance curve. Geoderma, 303, 150-164.
Begum, F., Bajracharya, R. M., Sitaula, B. K., & Sharma, S. (2013). Seasonal dynamics, slope aspect and land use effects on soil mesofauna density in the mid-hills of Nepal. International Journal of Biodiversity Science, Ecosystem Services & Management, 9(4), 290-297.  https://doi.org/10.1080/21513732.2013.788565
Beheshti, A., Raiesi, F., & Golchin, A. (2012). Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran. Agriculture, Ecosystems & Environment, 148, 121-133. https://doi.org/10.1016/j.agee.2011.12.001
Biro, K., Pradhan, B., Buchroithner, M., & Makeschin, F. (2013). Land use/land cover change analysis and its impact on soil properties in the northern part of Gadarif region, Sudan. Land Degradation & Development, 24(1), 90-102. https://doi.org/10.1002/ldr.1116
Blake, G. R., & Hartge, K. (1986). Bulk density. In  Klute, A. (Ed.) Methods of Soil Snalysis: Part 1 Physical and Mineralogical Methods, 2nd Edition (pp 363-375).  Madison: ASA-SSSA.
Bottomley, P. J., Angle, J. S., & Weaver, R. (2020). Methods of soil analysis, Part 2: Microbiological and biochemical properties (Vol. 12). Madison, WI: John Wiley & Sons.
Bulmer, C. E. (1998). Forest soil rehabilitation in British Columbia: A problem analysis. British Columbia: University of British Columbia Press.
Carter, M. R., & Gregorich, E. G. (Eds.) (2007). Soil sampling and methods of analysis. Boca Raton. CRC press.  https://doi.org/10.1201/9781420005271
Celik, I. (2005). Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83(2), 270-277. https://doi.org/10.1016/j.still.2004.08.001
Coser, T. R., de Figueiredo, C. C., Jovanovic, B., Moreira, T. N., Leite, G. G., Cabral Filho, S. L. S., Kato, E., Malaquias, J. V., & Marchão, R. L. (2018). Short-term buildup of carbon from a low-productivity pastureland to an agrisilviculture system in the Brazilian savannah. Agricultural Systems, 166, 184-195.
DeFries, R. S., Asner, G. P., & Houghton, R. A. (Eds.) 2004). Ecosystems and land use change. Washington DC American Geophysical Union Geophysical Monograph Series, AGU, Washington, D. C. Vol. 153, 344. doi: 10.1029/GM153
Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land‐use change on soil organic carbon stocks–a meta‐analysis. Global Change Biology, 17(4), 1658-1670.
Drake, T. W., Raymond, P. A., & Spencer, R. G. (2018). Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3), 132-142.
Duan, L., Sheng, H., Yuan, H., Zhou, Q., & Li, Z. (2021). Land use conversion and lithology impacts soil aggregate stability in subtropical China. Geoderma, 389, 114953.
Emadi, M., Baghernejad, M., & Memarian, H. R. (2009). Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy, 26(2), 452-457. https://doi.org/10.1016/j.landusepol.2008.06.001
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., ……. Snyder, P. K. (2005). Global consequences of land use. Science, 309 (No. 5734), 570-574.
Gee, G. W. and Or, D. (2002) Particle Size Analysis. In: Dane, J. H. and Topp, G. C., (Eds.), Methods of Soil Analysis, Part 4, (pp 255-293) Physical Methods, Soils Science Society of America, Book Series No. 5, Madison, .https://doi.org/10.2136/sssabookser5.4.c12
Golchin, A., & Asgari, H. (2008). Land use effects on soil quality indicators in north-eastern Iran. Soil Research, 46(1), 27-36. https://doi.org/10.1071/SR07049
Guidi, C., Vesterdal, L., Gianelle, D., & Rodeghiero, M. (2014). Changes in soil organic carbon and nitrogen following forest expansion on grassland in the Southern Alps. Forest Ecology and Management, 328, 103-116. https://doi.org/10.1016/j.foreco.2014.05.025
Guillaume, T., Maranguit, D., Murtilaksono, K., & Kuzyakov, Y. (2016). Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecological Indicators, 67, 49-57. https://doi.org/10.1016/j.ecolind.2016.02.039
Guo, L., Shen, J., Li, B., Li, Q., Wang, C., Guan, Y., D'Acqui, L. P., Luo, Y., Tao, Q., & Xu, Q. (2020). Impacts of agricultural land use change on soil aggregate stability and physical protection of organic C. Science of the Total Environment, 707, 136049. https://doi.org/10.1016/j.scitotenv.2019.136049
Hernández, Á., Arellano, E. C., Morales-Moraga, D., & Miranda, M. D. (2016). Understanding the effect of three decades of land use change on soil quality and biomass productivity in a Mediterranean landscape in Chile. Catena, 140, 195-204.
Houghton, R. A. (2003). Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B: Chemical and Physical Meteorology, 55(2), 378-390. https://doi.org/10.3402/tellusb.v55i2.16764
Huang, Y. M., Liu, D., & An, S. S. (2015). Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena, 125, 135-145.
Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79(1), 9-16.
Jakšić, S., Ninkov, J., Milić, S., Vasin, J., Živanov, M., Jakšić, D., & Komlen, V. (2021). Influence of slope gradient and aspect on soil organic carbon content in the region of Niš, Serbia. Sustainability, 13(15), 8332. https://doi.org/10.3390/su13158332
Kemper, W., & Rosenau, R. (1986). Aggregate stability and size distribution. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 2nd Edition (pp 425-442). Madison, Wisconsin. https://doi.org/10.2136/sssabookser5.1.2ed.c17
Khormali, F., Abtahi, A., & Stoops, G. (2006). Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran. Geoderma, 132 (1-2), 31-46.
Khormali, F., Ajami, M., Ayoubi, S., Srinivasarao, C., & Wani, S. (2009). Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture, Ecosystems & Environment, 134(3-4), 178-189.
Knudsen, D., Peterson, G. A. and Pratt, P. (1983) Lithium, Sodium and Potassium. In: Page, A.L., (Ed.), Methods of Soil Analysis, Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition (pp 225-246). The American Society of Agronomy, Inc., Soil Science Society of America, Inc., Madison,
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. https://doi.org/10.1016/j.geoderma.2004.01.032
Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197-209.
https://doi.org/10.1002/ldr.696
Lal, R. (2010). Enhancing eco-efficiency in agro-ecosystems through soil carbon sequestration. Eco-Efficiencies in Agro-Ecosystem, 50(1), 120-131. https://doi.org/10.2135/cropsci2010.01.0012
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x
Liu, D., Huang, Y., An, S., Sun, H., Bhople, P., & Chen, Z. (2018). Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients. Catena, 162, 345-353. https://doi.org/10.1016/j.catena.2017.10.028
Liu, M., Han, G., & Zhang, Q. (2019). Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China. International Journal of Environmental Research and Public Health, 16(20), 3809. https://doi.org/10.3390/ijerph16203809
Magdoff, F., & Weil, R. R. (2004). Soil organic matter in sustainable agriculture. Boca Raton: CRC press. https://doi.org/10.1201/9780203496374
Måren, I. E., Karki, S., Prajapati, C., Yadav, R. K., & Shrestha, B. B. (2015). Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? Journal of Arid Environments, 121, 112-123. https://doi.org/10.1016/j.jaridenv.2015.06.004
Martens, D. A., Reedy, T. E., & Lewis, D. T. (2004). Soil organic carbon content and composition of 130‐year crop, pasture and forest land‐use managements. Global Change Biology, 10(1), 65-78.
Mclean, E. O. (1982) Soil pH and Lime Requirement. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 199-224. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
Mills, A., & Fey, M. (2004). Frequent fires intensify soil crusting: Physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma, 121(1-2), 45-64.
Murty, D., Kirschbaum, M. U., Mcmurtrie, R. E., & Mcgilvray, H. (2002). Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8(2), 105-123.
Navas, A., Machín, J., Beguería, S., López-Vicente, M., & Gaspar, L. (2008). Soil properties and physiographic factors controlling the natural vegetation re-growth in a disturbed catchment of the Central Spanish Pyrenees. Agroforestry Systems, 72(3), 173-185. https://doi.org/10.1007/s10457-007-9085-2
Nelson, D. A., & Sommers, L. E. (1983). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd Edition. ASA-SSSA, Madison, (pp 539-579). https://doi.org/10.2134/agronmonogr9.2.2ed.c29
Nair, P. K. R. (2002). The nature and properties of soil, 13th edition. 54(3), In Brady, N. C., & Weil, R. R. (Eds.) Agroforesty Systems  54 (Page 249). https://doi.org/10.1023/A:1016012810895
Nelson, R. (1983). Carbonate and gypsum. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 181-197. https://doi.org/10.2134/agronmonogr9.2.2ed.c11
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USA: US Department of Agriculture.
Pabst, H., Kühnel, A., & Kuzyakov, Y. (2013). Effect of land-use and elevation on microbial biomass and water extractable carbon in soils of Mt. Kilimanjaro ecosystems. Applied Soil Ecology, 67, 10-19. https://doi.org/10.1016/j.apsoil.2013.02.006
Paz-Kagan, T., Shachak, M., Zaady, E., & Karnieli, A. (2014). A spectral soil quality index (SSQI) for characterizing soil function in areas of changed land use. Geoderma, 230, 171-184.
Plante, A., & McGill, W. (2002). Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil and Tillage Research, 66(1), 79-92. https://doi.org/10.1016/S0167-1987(02)00015-6
Poeplau, C., & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189-201. https://doi.org/10.1016/j.geoderma.2012.08.003
Rayment, G. E., & Lyons, D. J. (2010). Soil chemical methods: Australasia (Vol. 3). Australia: Commonwealth Scientific and Industrial Research Organization publishing.
Rengasamy, P., Greene, R., Ford, G., & Mehanni, A. (1984). Identification of dispersive behaviour and the management of red-brown earths. Australian Journal of Soil Research, 22(4), 413-431.
https://doi.org/10.1071/SR9840413
Rhoades, J. (1983). Cation exchange capacity. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (A.L. Page, R.H. Miller and D.R. Keeney), (Eds.) American Society of Agronomy, Inc. Soil Science Society of America. Inc. Madison, Wisconsin, (pp 149-157). https://doi.org/10.2134/agronmonogr9.2.2ed.c8
Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81-91.
Shang, F., Ren, S., Yang, P., Li, C., & Ma, N. (2015). Effects of different fertilizer and irrigation water types, and dissolved organic matter on soil C and N mineralization in crop rotation farmland. Water, Air, and Soil Pollution, 226, , 396.
https://doi.org/10.1007/s11270-015-2667-0
Šimanský, V., Bajčan, D., & Ducsay, L. (2013). The effect of organic matter on aggregation under different soil management practices in a vineyard in an extremely humid year. Catena, 101, 108-113.
Soane, B. (1990). The role of organic matter in soil compactibility: A review of some practical aspects. Soil and Tillage Research, 16(1-2), 179-201. https://doi.org/10.1016/0167-1987(90)90029-D
Solomon, D., Lehmann, J., & Zech, W. (2000). Land use effects on soil organic matter properties of chromic luvisols in semi-arid northern Tanzania: Carbon, nitrogen, lignin and carbohydrates. Agriculture, Ecosystems & Environment, 78(3), 203-213.
Swift, R. S. (2001). Sequestration of carbon by soil. Soil Science, 166(11), 858-871.
Taalab, A., Ageeb, G., Siam, H. S., & Mahmoud, S. A. (2019). Some characteristics of calcareous soils. A review AS Taalab, GW Ageeb, Hanan S. Siam and Safaa A. Mahmoud. Middle East Journal of Agriculture Research, 8(1), 96-105.
Tamene, G. M., Adiss, H. K., & Alemu, M. Y. (2020). Effect of slope aspect and land use types on selected soil physicochemical properties in north western Ethiopian highlands. Applied and Environmental Soil Science, https://doi.org/10.1155/2020/8463259
Valencia-Galindo, M., Sáez, E., Ovalle, C., & Ruz, F. (2021). Evaluation of the effectiveness of a soil treatment using calcium carbonate precipitation from cultivated and lyophilized bacteria in soil’s compaction Water. Buildings, 11(11), 545. https://doi.org/10.3390/buildings11110545
Wong, V. N., Greene, R., Dalal, R. C., & Murphy, B. W. (2010). Soil carbon dynamics in saline and sodic soils: a review. Soil Use and Management, 26(1), 2-11. https://doi.org/10.1111/j.1475-2743.2009.00251.x
Wynants, M., Solomon, H., Ndakidemi, P., & Blake, W. H. (2018). Pinpointing areas of increased soil erosion risk following land cover change in the Lake Manyara catchment, Tanzania. International Journal of Applied Earth Observation and Geoinformation, 71, 1-8. https://doi.org/10.1016/j.jag.2018.05.008
Xin, P., Zhou, T., Lu, C., Shen, C., Zhang, C., D'Alpaos, A., & Li, L. (2017). Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system. Advances in Water Resources, 103, 1-15.
Zare, M., Panagopoulos, T., & Loures, L. (2017). Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy, 67, 558-572.
Zhu, G., Deng, L., & Shangguan, Z. (2018). Effects of soil aggregate stability on soil N following land use changes under erodible environment. Agriculture, Ecosystems & Environment, 262, 18-28. https://doi.org/10.1016/j.agee.2018.04.012
Zhu, G. y., Shangguan, Z. P., & Deng, L. (2021). Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China. Catena, 200, 105181.
Zinn, Y. L., Marrenjo, G. J., & Silva, C. A. (2018). Soil C: N ratios are unresponsive to land use change in Brazil: A comparative analysis. Agriculture, Ecosystems & Environment, 255, 62-72.