Evaluating the effects of genotype mixture and stress tolerant indices in durum wheat (Triticum durum Desf.) under drought stress

Document Type : Research Paper

Authors

1 presently, PhD student in Agriculture, Faculty of Agriculture, Shahed University, Tehran, I.R. Iran

2 Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz University, Darab, Iran.

3 Agroecology Department, College of Agriculture and Natural Resources of Darab, Shiraz University, Darab, Iran

10.22099/iar.2022.42353.1469

Abstract

Drought stress is one of the major limitations in crop production worldwide. Genotype mixture has been evaluated as a new way to increase yield in different crops. In this study, different genotype mix systems in durum wheat (Triticum durum Desf.) as impacted by drought stress were investigated. The experiments were conducted under normal and water-stressed conditions in the form of randomized complete block designs, each with three replicates,  in the research farm of the College of Agriculture and Natural Resources of Darab, Shiraz University for two years (2016-2017 and 2017 - 2018). Monocultures of four durum wheat genotypes including Shabrang and Behrang cultivars and DW-92-4, DW-94-14 lines and their binary and quadruple mixing combinations were used in the cropping systems. Drought tolerance indices, including stability tolerance index (STI), mean productivity (MP), geometric mean productivity (GMP), stress susceptibility index (SSI), tolerance index (TOL), yield index (YI), yield stability index (YSI) and a new criterion designated as SIIG (Selection Index of Ideal Genotype) were used and evaluated to identify the best cropping system. Behrang+DW-94-14 cropping system showed the highest GMP, STI and MP values of drought indices, while the highest value (0.890) of SIIG index was identified in the Shabrang+DW-94-14 cropping system. Positive correlations were found among GMP, STI, and MP with YP. Moreover, biplot analysis of these indices using principle component analysis revealed strong positive correlations among GMP, STI and MP while SIIG index was closely related to YSI index. GMP, MP, and STI indices were identified as the best criteria to identify cropping systems in water-stressed conditions. In both normal and water-stressed circumstances, quadruple genotype culture yielded better yields than monoculture and most binary cultures. However, the highest seed yield was obtained in the normal and water-stressed treatments in the Behrang + DW-94-14 cultivation system with an average of 8815 and 7342 kg ha-1, respectively.

Keywords


Article Title [Persian]

ارزیابی اثرات مخلوط ژنوتیپی و شاخص‌های تحمل به تنش در گندم دوروم (.Triticum durum Desf) تحت تنش خشکی

Authors [Persian]

  • مریم میردورقی 1
  • علی بهپوری 2
  • احسان بیژن زاده 3
1 در حال حاضر دانشجوی دکتری گروه زراعت دانشکده کشاورزی، دانشگاه شاهد، تهران، ج.ا. ایران
2 گروه اگرواکولوژی دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، داراب، ج.ا. ایران
3 گروه اگرواکولوژی دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز، داراب، ج.ا. ایران
Abstract [Persian]

تنش‌خشکی یکی از محدودیت‌های عمده در تولید محصولات زراعی در سراسر جهان است. مخلوط ژنوتیپ‌ها به عنوان روشی جدید برای افزایش عملکرد در محصولات گوناگون مورد ارزیابی قرار گرفته است. در این مطالعه، سامانه‌های مخلوط ژنوتیپ‌های گوناگون گندم دوروم (Triticum durum Desf.) تحت ‌تأثیر تنش‌آبی مورد ارزیابی قرار گرفت. آزمایش‌ها در دو شرایط معمولی و تنش‌آبی در قالب طرح های بلوک های کامل تصادفی، هر کدام با سه تکرار، در مزرعه تحقیقاتی دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز به مدت دو سال (1396-1395 و 1397-1396) انجام شد. از تک‌کشت‌های چهار ژنوتیپ گندم دوروم شامل ارقام شبرنگ و بهرنگ و لاین‌های DW-92-4، DW-94-14 و ترکیب دوتایی و چهارگانه آنها در سامانه‌های کشت استفاده شد.  شاخص‌های تحمل به خشکی شامل شاخص تحمل پایداری (STI)، میانگین بهره‌وری (MP)، میانگین هندسی بهره‌وری (GMP)، شاخص حساسیت به تنش (SSI)، شاخص تحمل (TOL)،شاخص عملکرد (YI) و شاخص پایداری عملکرد (YSI) و یک معیار جدید با عنوان SIIG (شاخص انتخاب ژنوتیپ ایده آل) برای شناسایی بهترین سامانه کشت مورد استفاده و ارزیابی قرار گرفت. سامانه کشت بهرنگ + DW-94-14 بالاترین مقادیر GMP، STI و MP را در شاخص‌های خشکی نشان داد و بیشترین مقدار SIIG (0.890) در سامانه کشت ژنوتیپ شبرنگ + DW-94-14 شناسایی شد. همبستگی مثبتی بین GMP، STI و MP با YP پیدا شد. علاوه بر این، تجزیه و تحلیل بای‌پلات این شاخص‌ها با استفاده از تحلیل مؤلفه‌های اصلی، همبستگی مثبت قوی را بین GMP، STI و MP نشان داد در حالی که شاخص SIIG ارتباط نزدیکی با شاخص YSI داشت. در این مطالعه، شاخص‌های GMP، MP و STI به عنوان بهترین معیار برای شناسایی سامانه‌های کشت در شرایط تنش‌آبی شناسایی شدند. کشت چهارتایی ژنوتیپ‌ها در مقایسه با کشت‌خالص ژنوتیپ‌ها و اکثر کشت‌های دوتایی هم در شرایط نرمال و هم در شرایط تنش‌آبی عملکرد بالاتری را نشان داد. اما بیشترین عملکرد دانه در تیمارهای نرمال و تنش آبی در سامانه کشت بهرنگ + DW-94-14 به ترتیب با میانگین 8815 و 7342 کیلوگرم در هکتار به دست آمد.

Keywords [Persian]

  • تنش‌آبی
  • ژنوتیپ
  • شاخص تحمل به خشکی
  • عملکرد
  • گندم دوروم
Abdolshahi, R., Safarian, A., Nazari, M., Pourseyedi, S., Mohamadi-Nejad, G., (2013). Screening drought- tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 59, 685–704. DOI: 10.1080/03650340.2012.667080
Bouslama, M., Schapaugh Jr, W. T., (1984). Stress tolerance in soybean. I: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933-937.
Clarke, J. M, Depauw, R. M., & Townley-Smith, T. F. (1992). Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 32 (3), 723-728.DOI:10.2135/CROPSCI1992.0011183X003200030029X
FAO, (2016). Food and agriculture: key to achieving the 2030 agenda for sustainable development. Food and Agricultural Organization of the United Nations. Retrieved from http://www.fao.org/ 3/a-i5499e.
Farooq, M., Hussain, M., Wahid, A., & Siddique,        K. H. M. (2012). Drought stress in plants: An overview. In: Aroca R. (Ed.) Plant responses to drought stress (pp. 111-135). Springer-Verlag Berlin, Heidelberg, DOI: 10.1007/978-3-642-32653-0-1.
Farshadfar, E., Mohammadi, R., Farshadfar, M., & Dabiri, S. (2013). Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. Australian Journal of Crop Science, 7 (1), 130-138.
Farshadfar, E., & Javadinia, J .(2011). Evaluation of chickpea (Cicer arietinum L.) genotypes for drought tolerance. Seed and Plant Journal, 27, 517-537. (In Persian).
Fernandez, G. C. J .(1992). Effective selection criteria for assessing plant stress tolerance. In Kuo C. G., (Ed.), Adaptation of food crop to temperature and water stress. Proceeding of 4th International Symposium, Asian Vegetable and Research and Development Center (pp. 257-270). Shanhua, Taiwan, AVRDC.
Fischer, R.A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. Grain yield response. Australian Journal of Agricultural Research, 29, 897-912. DOI: 10.1071/AR9780897
Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R. G., Ricciardi, G. L., & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523- 531.
Hossain, A. B. S., Sears, A. G., Cox, T. S., & Paulsen, G. M . (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30 (3), 622-627. DOI:10.2135/cropsci1990.0011183X003000030030x
Ilker, E., Tatar, O., AykutTonk, F., Tosun, M., & Turk, J. (2011). Determination of tolerance level of some wheat genotypes to post-anthesis drought. Turkish Journal of Field Crops, 16(1), 59-63.
Khodarahmpour, Z., Choukan, R., Bihamta, M. R., Majidi Hervan, E. (2011). Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan province conditions. Journal of Agricultural Science and Technology, 13 (1), 111-121. DOI: 20.1001.1.16807073.2011.13.1.11.4
Lepekhov, S. B., & Khlebova, L. P. (2018). Assessment of drought resistant indices in spring bread wheat under various environmental conditions. Ukrainian Journal of Ecology, 8(4), 314-319.
Lin, C. S., Binns, M. R., Lefkovitch, L. P. (1986). Stability analysis: Where do we stand? Crop Science, 26, 894-900.
Mevlut, A., & Sait, C. (2011). Evaluation of drought tolerance indices for selection of Turkish oat (Avena sativa L.) landraces under various environmental conditions. Zemdirbyste-Agriculture, 98(2), 157-166.
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391 (1-2), 202-216. DOI: 10.1016/j.jhydrol.2010.07.012
Mitra, J. (2001). Genetics and genetic improvement of drought resistance in crop plants. Current Science Association, 80 (6), 758-763.
Mohammadi, R., & Abdulahi A. (2017). Evaluation of durum wheat genotypes based on drought tolerance indices under different levels of drought stress. Journal of Agricultural. Sciences, 62(1), 1-14. DOI: 10.2298/JAS1701001M
Mohammadi, R., Armionb, M., Kahrizic, D., & Amrid, A. (2010). Efficiency of screening techniques for evaluating durum wheat genotypes under mild drought conditions. International Journal of Plant Production, 4(1), 11-24. DOI: 10.22069/IJPP.2012.677
Moosavi, S. S., Yazdi-Samadi, B., Naghavi, M. R., Zali, A. A., Dashti, H., & Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert, 12 (2), 165–178. DOI: 10.22059/JDESERT.2008.27115
Mursalova, J., Akparov, Z., Ojaghi, J., Eldarov, M., Belen, S., Gummadov, N., & Morgounov, A. (2015). Evaluation of drought tolerance of winter bread wheat genotypes under drip irrigation and rain-fed conditions. Turkish Journal of Agriculture and Forestry, 39, 1-8. DOI: 10.3906/tar-1407-152
NajafiMirak, T., Dastfal, M., Andarzian, B., Farzadi, H., Bahari, M., & Zali, H. (2018). Assessment of non-parametric methods in selection of stable genotypes of durum wheat (Triticum turgidum L. var. durum). Iranian Journal of Crop Science, 20(2), 126-138. (In Persian). DOI: 20.1001.1.15625540.1397.20.2.3.8
Nouri, A., Etminan, A., de Silva, J. A. T., & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5(1),8-16.
Patel, J. M., Pate, A. S., Patel, C. R., Mamrutha, H. M., Pradeep, S. H., & Pachchigar, K. P .(2019). Evaluation of selection indices in screening durum wheat genotypes combining drought tolerance and high yield potential. International Journal of Current Microbiology and Applied Science, 8(4), 1165-1178. DOI: 10.20546/ijcmas.2019.804.134
Sio-Se Mardeh, A., Ahmadi, A., Poustini, K., & Mohammadi, V. (2006). Evaluation of drought resistance indices under various environmental conditions. Field Crops Research, 98, 222-229. DOI:10.1016/j.fcr.2006.02.001
Talebi, R. (2009). Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). General and Applied Plant Physiology, 35(1-2), 64-74.
Yasir, T. A., Chen, X., Tian, L., Condon, A. G., & Hu, Y. G. (2013). Screening of Chinese bread wheat genotypes under two water regimes by various drought tolerance indices. Australian Journal of Crop Science, 7(13), 2005-2013.
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., & Hoseini, S. M. (2015). Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: Introduction of new method. Biological Forum - An International Journal, 7(2), 703-711.
Zali, H., Sofalian, O., Hasanloo, T., Asghari, A., & Zeinalabedini, M. (2016). An appropriate strategy for selection of drought tolerant genotypes in canola. Journal of Plant Breeding and Crop Science, 78 (20), 77-90.
Zebarjadi, A., Mirany, T., Kahrizi, D., Ghobadi, M., & Nikoseresht, R. (2012). Assessment of drought tolerance in some bread wheat genotypes using drought resistance indices. Biharean Biologist Journal, 6(2), 94-98.