Interaction effects of biochar levels, irrigation regimes, and irrigation water salinity levels on wheat II: grain and soil ions concentration and soil water retention curve

Document Type : Research Paper

Authors

1 Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, I.R. Iran

2 Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, I.R. Iran and Drought Research Center, Shiraz University, Shiraz, I.R. Iran

10.22099/iar.2022.42729.1479

Abstract

In recent decades, the application of biochar to improve soil fertility and soil physical property and also enhance crop tolerance to abiotic stress has been proposed by researchers. Therefore, the effect of three levels of biochar (zero, 40, and 80 Mg ha-1) produced from wheat straw, irrigation water salinity (0.6, 6, and 12 dS m-1), and three irrigation regimes (50, 75, and 100% of crop water requirement) on wheat grain ions and soil ions concentration as well as some soil physical properties after wheat harvest were investigated under greenhouse conditions. The results showed that the Na+ and K+ concentration in soil significantly increased by application of biochar and also salinity, while application of 50% deficit irrigation significantly declined the Na+ and K+ concentration in soil. Also, the soil ECe of the highest level of biochar and salinity increased 2.1 and 1.59 times that of without biochar and salinity, respectively, while application of deficit irrigation significantly declined the soil ECe due to lower application of saline water and lower accumulation of salt. Considering the main effects of treatments, application of the highest level of biochar (80 Mg ha-1) increased the K+ concentration in grain, while application of saline water (6 and 12 dS m-1) and deficit irrigation (75% and 50 %) both declined the K+ concentration in grain. The application of biochar enhanced the soil water holding capacity. In conclusion, it is recommended to apply wheat straw biochar to increase soil fertility and increased water storage capacity in the soil. Finally, the application of non-saline biochar is suggested to prevent salinization and the destruction of agricultural soil.

Keywords


Article Title [Persian]

اثرات متقابل سطوح بیوچار، رژیم‌های آبیاری و سطوح شوری آب آبیاری بر گندم II: غلظت یون‌های دانه و خاک و منحنی نگهداشت آب خاک

Authors [Persian]

  • محمد رضا شبان 1
  • فاطمه رزاقی 2
  • علی رضا سپاسخواه 2
1 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران
2 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران و مرکز تحقیقات خشکسالی، دانشگاه شیراز، شیراز، جمهوری اسلامی ایران، ج.ا. ایران
Abstract [Persian]

در دهه های اخیر، استفاده از بیوچار برای بهبود حاصلخیزی خاک و خواص فیزیکی خاک و همچنین افزایش تحمل گیاه به تنش غیرزیستی توسط محققان پیشنهاد شده است. بنابراین تأثیر سه سطح بیوچار (صفر، 40 و 80 مگا گرم در هکتار) از کاه و کلش گندم ، شوری آب آبیاری (6/0، 6 و 12 دسیزیمنس بر متر) و سه رژیم آبیاری (50، 75 و 100 درصد نیاز آبی گیاه) بر غلظت یونهای دانه گندم و یونهای خاک و همچنین برخی خصوصیات فیزیکی خاک پس از برداشت گندم در شرایط گخانه‌ای بررسی شد. نتایج نشان داد که غلظت +Na و +K در خاک با کاربرد بیوچار و همچنین شوری به طور معنی‌داری افزایش یافت، در حالی که استفاده از کم‌آبیاری 50 درصد نیاز آبی گیاه باعث کاهش معنی‌دار غلظت +Na و +K در خاک شد. همچنین، ECe خاک با بالاترین سطح بیوچار و شوری به دلیل تجمع غلظت نمک در خاک به ترتیب 2/1 و 1/59 برابر بدون بیوچار و بدون شوری افزایش یافت، در حالی که استفاده از کم آبیاری به دلیل کاربرد کمتر آب شور و تجمع نمک کمتر باعث کاهش معنی‌دار ECe خاک شد. با در نظر گرفتن اثرات اصلی تیمارها، کاربرد بالاترین سطح بیوچار (80 مگاگرم بر هکتار) باعث افزایش غلظت پتاسیم در دانه شد، در حالی که کاربرد آب شور (6 و 12 دسیزیمنس بر متر) و کم آبیاری (75 و 50 درصد نیاز آبی گیاه) هر دو باعث کاهش غلظت پتاسیم در دانه شدند. همچنین، استفاده از بیوچار ظرفیت نگهداری آب در خاک را بهبود ‌بخشید. در نتیجه، استفاده از بیوچار کاه وکلش گندم برای افزایش حاصلخیزی خاک و بهبود ذخیره آب در خاک توصیه می‌شود. در نهایت استفاده از بیوچار غیر شور جهت جلوگیری از شور شدن و تخریب خاک‌های کشاورزی پیشنهاد می‌شود.

Keywords [Persian]

  • پارامترهای معادله ون گنوختن
  • منحنی نگهداشت آب خاک
  • نسبت سدیم به پتاسیم
  • هدایت الکتریکی عصاره اشباع خاک
Agbna, G. H., Dongli, S., Zhipeng, L., Elshaikh, N. A., Guangcheng, S., & Timm, L. C. (2017). Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, 90-101.
Ajayi, A. E., Holthusen, D., & Horn, R. (2016). Changes in microstructural behaviour and hydraulic functions of biochar amended soils. Soil and Tillage Research, 155, 166-175.
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201, 368-378.
 
 
Alghamdi, A. G., Alkhasha, A., & Ibrahim, H. M. (2020). Effect of biochar particle size on water retention and availability in a sandy loam soil. Journal of Saudi Chemical Society, 24(12), 1042-1050.
Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., ... & Al-Saif, A. M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993.
Ali, A., & Yan, E. R. (2017). The forest strata-dependent relationship between biodiversity and aboveground biomass within a subtropical forest. Forest Ecology and Management, 401, 125-134.
Badr, E. A., Ibrahim, O. M., Tawfik, M. M., & Bahr, A. A. (2015). Management strategy for improving the productivity of wheat in newly reclaimed sandy soil. Management, 8(4), 1438-1445.
Chaudhry, S. A., Ahmed, M., Siddiqui, S. I., & Ahmed, S. (2016). Fe (III)–Sn (IV) mixed binary oxide-coated sand preparation and its use for the removal of As (III) and As (V) from water: Application of isotherm, kinetic and thermodynamics. Journal of Molecular Liquids, 224, 431-441.
Chai, Q., Gan, Y., Zhao, C., Xu, H. L., Waskom, R. M., Niu, Y., & Siddique, K. H. (2016). Regulated deficit irrigation for crop production under drought stress. A review. Agronomy for Sustainable Development, 36(1), 1-21.
Ćosić, M., Djurović, N., Todorović, M., Maletić, R., Zečević, B., & Stričević, R. (2015). Effect of irrigation regime and application of kaolin on yield, quality and water use efficiency of sweet pepper. Agricultural Water Management, 159, 139-147.
Frimpong, K. A., Abban-Baidoo, E., & Marschner, B. (2021). Can combined compost and biochar application improve the quality of a highly weathered coastal savanna soil? Heliyon, 7(5), e07089.
Hamam, K. A., & Negim, O. (2014). Evaluation of wheat genotypes and some soil properties under saline water irrigation. Annals of Agricultural Sciences, 59, 165-176.
Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1), 347-361.
Hu, Y., Burucs, Z., & Schmidhalter, U. (2006). Short-term effect of drought and salinity on growth and mineral elements in wheat seedlings. Journal of Plant Nutrition, 29(12), 2227-2243.
Irakoze, W., Prodjinoto, H., Nijimbere, S., Bizimana, J. B., Bigirimana, J., Rufyikiri, G., & Lutts, S. (2021). NaCl- and Na2SO4-induced salinity differentially affect clay soil chemical properties and yield components of two rice cultivars (Oryza sativa L.) in Burundi. Agronomy, 11(3), 571
Khan, S., B. J. Reid, G. Li, and Y. G. Zhu. (2014). Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environment International, 68, 154–61.
Knudsen, D., Peterson, G. A., & Pratt, F. (1982). Lithium, sodium, and potassium. In Page, A. L. (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 225–246). Madison, WI, USA: American Society of Agronomy and Soil Science Society of America.
Li, L., Zhang, Y. J., Novak, A., Yang, Y., & Wang, J. (2021). Role of biochar in improving sandy soil water retention and resilience to drought. Water, 13(4), 407.
Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30.
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117-128.
Melero, S., Madejón, E., Ruiz, J. C., & Herencia, J. F. (2007). Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. European Journal of Agronomy, 26, 327-334.
Najafi-Ghiri, M., Abtahi, A., Owliaie, H., Hashemi, S. S., & Koohkan, H. (2011). Factors affecting potassium pools distribution in calcareous soils of southern Iran. Arid Land Research and Management, 25(4), 313-327.
Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174, 105-112.
Parra, S., Pérez, J. J., & Calatrava, J. (2000). Vegetal waste from protected horticulture in southeastern Spain: Characterisation of environmental externalities, V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Sustainable Technologies, Cartagena and Almería, 7-11th March 2000. Cartagena: ISHS Acta Horticulturae.
Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57, 175-206.
Rao, S. S., Tanwar, S. P. S., & Regar, P. L. (2016). Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agricultural Water Management, 169, 14-25.
Razzaghi, F., Jacobsen, S. E., Jensen, C. R., & Andersen, M. N. (2014). Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought–mechanisms of tolerance. Functional Plant Biology, 42(2), 136-148.
Razzaghi, F., Obour, P. B., & Arthur, E. (2020a). Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055.
Razzaghi, F., Poormansour, S., & Sepaskhah, A. R. (2020b). Effects of wheat straw biochar and irrigation water on hydraulic and chemical properties of a sandy loam soil after faba bean cultivation. Iran Agricultural Research, 39, 67-76.
Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37, 613-620.
Rezaie, N., Razzaghi, F., & Sepaskhah, A. R. (2019). Different levels of irrigation water salinity and biochar influence on faba bean yield, water productivity, and ions uptake. Communications in Soil Science and Plant Analysis, 50(5), 611-626.
Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. In Sparks, D. L. et al. (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 417–435). Wisconsin, USA: Soil Science Society of America and American Society of Agronomy.
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Soil Science, 78, 154–158.
Shabala, S., & Cuin, T. A. (2008). Potassium transport and plant salt tolerance. Physiologia Plantarum, 133, 651–669.
Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration. Soil Biology and Biochemistry, 42, 2345-2347.
Spano, C., & Bottega, S. (2016). Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity. Estuarine, Coastal and Shelf Science, 169, 173-181.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82.
Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., ... & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62-68.
Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34, 231-238.
Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
Younis, U., Athar, M., Malik, S. A., Raza Shah, M. H., & Mahmood, S. (2015). Biochar impact on physiological and biochemical attributes of Spinach (Spinacia oleracea L.) in nickel contaminated soil. Global Journal of Environmental Science and Management, 1, 245-254.
Zhou, H., Fang, H., Zhang, Q., Wang, Q., Chen, C., Mooney, S. J., ... & Du, Z. (2019). Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. European Journal of Soil Science, 70(2), 291-300.
Zimmerman, A. R., Gao, B., & Ahn, M. Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43, 1169-117.