Interaction effects of biochar levels, irrigation regimes, and irrigation water salinity levels on wheat: I: Physiological parameters, evapotranspiration, and yield

Document Type : Research Paper

Authors

1 Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, I.R. Iran

2 Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, I.R. Iran and Drought Research Center, Shiraz University, Shiraz, I.R. Iran

10.22099/iar.2022.42728.1478

Abstract

Biochar, as a soil amendment, improves soil fertility and enhances crops productivity under water or salinity stresses. This study aimed to investigate the effects of biochar application rates (zero, 40, and 80 Mg ha-1) under three irrigation regimes (50, 75, and 100% of plant water requirement) and salinity levels (0.6, 6, and 12 dS m-1) on physiological parameters, evapotranspiration, and growth of wheat grown under greenhouse condition. The experiment was performed in a complete randomized design with a factorial arrangement in four replications. Application of a high level of salinity (12 dS m-1) declined wheat grain yield by 28%, 57%, and 75% in comparison with that at 0.6 dS m-1 under zero, 40, and 80 Mg ha-1 biochar application, respectively. The results showed that application of 80 Mg ha-1 biochar decreased wheat evapotranspiration by 24.4% in comparison with that at no biochar application. In addition, the application of biochar improved wheat stomatal conductance and canopy temperature under both abiotic stress conditions. Salinity (12 dS m-1) and deficit irrigation (50 %), respectively declined wheat evapotranspiration by 19% and 15% in comparison with that at 0.6 dS m-1 and full irrigation. Also, the application of biochar and salinity both declined the root length density due to the accumulation of salt around the root. It is concluded that 40 Mg ha-1 of biochar can be applied as a soil amendment to improve wheat yield and reduce evapotranspiration under applied deficit irrigation and salinity stress.

Keywords


Article Title [Persian]

اثرات متقابل سطوح بیوچار، رژیم‌های آبیاری و سطوح شوری آب آبیاری بر گندم:I : پارامترهای فیزیولوژیکی، تبخیر-تعرق و محصول

Authors [Persian]

  • محمد رضا شبان 1
  • فاطمه رزاقی 2
  • علی رضا سپاسخواه 2
1 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران
2 بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج.ا. ایران و مرکز تحقیقات خشکسالی، دانشگاه شیراز، شیراز، جمهوری اسلامی ایران، ج.ا. ایران
Abstract [Persian]

بیوچار، به عنوان اصلاح کننده خاک، سبب حاصلخیزی خاک و افزایش بهره‌وری محصولات تحت تنش‌های آبی یا شوری می‌شود. این مطالعه با هدف بررسی اثرات میزان مصرف بیوچار (صفر، 40 و 80 مگا‌گرم بر هکتار) در سه رژیم‌ آبیاری (50، 75 و 100 درصد نیاز آبی گیاه) و سطوح شوری (0/6، 6 و 12 دسی زیمنس بر متر) بر پارامترهای فیزیولوژیکی، تبخیر-تعرق و رشد گندم کشت شده در شرایط گلخانه انجام شد. آزمایش در قالب طرح کاملا تصادفی با آرایش فاکتوریل در چهار تکرار انجام شد. اعمال شوری در سطح بالا (12 دسی‌زیمنس بر متر)  باعث کاهش به ترتیب 28%، 57% و 75% عملکرد دانه گندم در مقایسه با 0/6 دسی‌زیمنس بر متر مربع در سطوح مصرف صفر، 40 و 80 مگا‌گرم در هکتار بیوچار شد. نتایج نشان داد که مصرف 80 مگاگرم در هکتار بیوچار باعث کاهش تبخیر-تعرق گندم به میزان 24/4 درصد در مقایسه با عدم مصرف بیوچار شد. علاوه بر این، کاربرد بیوچار باعث بهبود هدایت روزنه‌ای و دمای پوشش سبز گندم در هر دو شرایط تنش غیرزیستی شد. شوری (12 دسی‌زیمنس بر متر) و کم آبیاری (50 درصد) به ترتیب 19 و 15 درصد تبخیر- تعرق گندم را در مقایسه با 0/6 دسی‌زیمنس بر متر و آبیاری کامل کاهش دادند. همچنین، کاربرد بیوچار و شوری بدلیل تجمع نمک در اطراف ریشه،  سبب کاهش تراکم طولی ریشه  شدند. نتیجه‌گیری می‌شود که مصرف 40 مگاگرم بر هکتار بیوچار می‌تواند به عنوان اصلاح‌کننده خاک برای بهبود عملکرد گندم و کاهش تبخیر-تعرق در شرایط تنش کم‌آبیاری و شوری به کاربرده شده، استفاده شود.

Keywords [Persian]

  • بیوچار
  • تبخیر-تعرق
  • تراکم طولی ریشه
  • دمای پوشش سبز
  • هدایت روزنه‌ای
Afzal, I., Basra, S. M., Farooq, M., & Nawaz, A. (2006). Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. International Journal of Agriculture and Biology, 8(1), 23-28.
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015a). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 201(5), 368-378.
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015b). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68.
Akoto-Danso, E. K., Manka’abusi, D., Steiner, C., Werner, S., Häring, V., Nyarko, G., ... & Buerkert, A. (2019). Agronomic effects of biochar and wastewater irrigation in urban crop production of Tamale, northern Ghana. Nutrient Cycling in Agroecosystems, 115(2), 231-247.
Alburquerque, J. A., Salazar, P., Barrón, V., Torrent, J., del Campillo, M. D. C., Gallardo, A., & Villar, R. (2013). Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475-484.
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., Arif, M. S., Hafeez, F., Al-Wabel, M. I., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24, 12700–12712.
Artiola, J. F., Rasmussen, C., & Freitas, R. (2012). Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Science, 177(9), 561-570.
Campos, C. A., Bowen, A. J., Roman, C. W., & Palmiter, R. D. (2018). Encoding of danger by parabrachial CGRP neurons. Nature, 555(7698), 617-622.
D'Hose, T., Debode, J., De Tender, C., Ruysschaert, G., & Vandecasteele, B. (2020). Has compost with biochar applied during the process added value over biochar or compost for increasing soil quality in an arable cropping system?. Applied Soil Ecology, 156, 103706.
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46-59.
Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376(1), 347-361.
Kammann, C. I., Linsel, S., Gößling, J. W., & Koyro, H. W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil, 345(1), 195-210.
Luo, Z., Wang, L., Yu, P., & Chen, Z. (2017). Experimental study on the application of an ionic liquid as a shale inhibitor and inhibitive mechanism. Applied Clay Science, 150, 267-274.
Misra, A. K. (2014). Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153-165.
Munns, R. (2005). Genes and salt tolerance: bringing them together. New phytologist, 167(3), 645-663.
Naiji, M., & Souri, M. K. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Scientiarum Polonorum Hortorum Cultus, 17(2), 167-175.
Najarian, A., & Souri, M. K. (2020). Influence of sugar cane compost as potting media on vegetative growth, and some biochemical parameters of Pelargonium × hortorum. Journal of Plant Nutrition, 43(17), 2680-2684.
Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: three case studies. Mitigation and Adaptation Strategies for Global Change, 11(2), 429-444.
Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068-1072.
Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1), 439-451.
Pannu, R. K., & Singh, D. P. (1993). Effect of irrigation on water use, water-use efficiency, growth and yield of mungbean. Field Crops Research, 31(1-2), 87-100.
Pour-Aboughadareh, A., Mohammadi, R., Etminan, A., Shooshtari, L., Maleki-Tabrizi, N., & Poczai, P. (2020). Effects of drought stress on some agronomic and morpho-physiological traits in durum wheat genotypes. Sustainability, 12(14), 5610.
Ramlow, M., Foster, E. J., Del Grosso, S. J., & Cotrufo, M. F. (2019). Broadcast woody biochar provides limited benefits to deficit irrigation maize in Colorado. Agriculture, Ecosystems & Environment, 269, 71-81.
Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.
Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2011). Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of Agronomy and Crop Science, 197(5), 348-360.
Razzaghi, F., Ahmadi, S. H., Jacobsen, S. E., Jensen, C. R., & Andersen, M. N. (2012). Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science, 198(3), 173–184.
Rezaie, N., Razzaghi, F., & Sepaskhah, A. R. (2019). Different levels of irrigation water salinity and biochar influence on faba bean yield, water productivity, and ions uptake. Communications in Soil Science and Plant Analysis, 50(5), 611-626.
SAS Institute Inc. (2007). SAS user's guide in statistics (9th ed.). Cary: SAS Institute Inc.
Shamsi, K., & Kobraee, S. (2013). Biochemical and physiological responses of three wheat cultivars (Triticum aestivum L.) to salinity stress. Annals of Biological Research, 4(4), 180-185.
Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67-78.
Tari, A. F. (2016). The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agricultural Water Management, 167, 1-10.
Thomas, S. C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., ... & Winsborough, C. (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, 129, 62-68.
Usman, M., Hanna, K., & Haderlein, S. (2016). Fenton oxidation to remediate PAHs in contaminated soils: A critical review of major limitations and counter-strategies. Science of the Total Environment, 569, 179-190.
Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231-238.