Mechanical analysis of cluster-grain separator device of a new head of paddy harvesting machine

Document Type: Research Paper


1 Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz, Iran.

2 - Biosystems Engineering Department, College of Agriculture, Tarbiat Modares University, Tehran, Iran

3 Assistant Professor of Biosystems Engineering Department, Shiraz University, Shiraz, I.R. Iran.

4 Department of Biosystems Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran



This paper presents stress and strain analysis of outer shaft shoulder (OSS) and inner shaft shoulder (ISS) of a new paddy harvesting head (PHH) using finite element method (FEM). Snapping grain unit is a part of this head, with OSS and ISS as its members. The analysis was performed using the ABAQUS software with Dynamics Explicit Solution Method. Eight-node block and four-node tetrahedral elements were used to mesh the parts of the head. After the analyses, the stress and strain curves, and their maximum values were estimated for various parts. Analytical method was used to verify the FEM results and to calculate the factor of safety (FS) of the OSS and ISS components and also to estimate the number of cycles to failure of each component. The maximum amount of force applied to each tooth of shoulder was 4.29 Nmm-1. The maximum stress in both shoulders was obtained as 44.43 MPa. Other results showed, fatigue factors of safety for all components were less than their relevant yield factor of safety. Therefore, the fatigue in components would occur first. The study showed the predicted life for OSS and ISS components is more than 106 cycles, thus the components have an infinite-life. A fitted regression line to the data showed that the calculated stresses from analytical method lie within bounds of 7.89 % of the predicted values with a coefficient of determination of 0.98. Hence, it could be concluded that there is a good agreement between the analytical and FEM results.


Article Title [Persian]

تحلیل مکانیکی سامانه جدا کننده دانه از خوشه یک هد جدید برداشت دانه های شلتوک

Authors [Persian]

  • هادی عظیمی نژاد 1
  • تیمور توکلی هشجین 2
  • محمد امین نعمت اللهی 3
  • سید حسین کارپرورفرد 4
1 گروه مهندسی مکانیک بیوسیستم، دانشگاه شیراز، شیراز، ج. ا. ایران
3 استادیار بخش مهندسی بیوسیستم، دانشکده کشاورزی دانشگاه شیراز، شیراز، ج.ا. ایران
4 گروه مهندسی مکانیک بیوسیستم، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

در این مقاله تحلیل تنش و کرنش شانه محور بیرونی و شانه محور درونی هد برداشت جدید برنج با استفاده از روش المان محدود ارائه می‌شود. این هد برداشت شامل سامانه جدا کننده دانه از ساقه بوده که هریک از شانه­­های محورهای بیرونی و درونی عضوی از این سامانه می­باشند. از نرم‌افزاز اباکوس با حلگر صریح دینامیکی برای انجام واکاوی، و از بلوک­های هشت گره­ای و المان­های تتراهدرال به منظور المان­بندی قطعات استفاده شد. پس از اتمام شبیه­سازی، نمودارهای تنش و کرنش قطعات رسم شده و مقادیر بیشینه آن­ها در هر یک از قطعات تعیین شد. از روش تحلیلی به منظور صحت سنجی نتایج حاصل از شبیه­سازی و همچنین محاسبه ضریب اطمینان و تعیین عمر هر یک از قطعات استفاده شد. حداکثر میزان نیروی اعمال شده بر روی هر دندانه شانه 29/4 نیوتن بر میلیمتر بود. حداکثر تنش در هر دو شانه 43/44 مگاپاسکال بدست آمد. نتایج نشان داد ضریب اطمینان خستگی تمام قطعات از ضریب اطمینان تسلیم آن­ها کمتر است. بنابراین قطعات زودتر دچار خستگی می­شوند. عمر محاسبه شده برای هر یک از قطعات بیشتر از  ۱۰۶بود. بنابراین قطعات (شانه محور بیرونی و شانه محور درونی) در محدوده عمر نامحدود قرار دارند. خط رگرسیون با ضریب تبیین ۹۸/۰ بر داده­ها انطباق داده شد و همچنین اختلاف بین داده­های پیش­بینی شده از روش المان محدود و محاسبه شده با روش تحلیلی در محدوده ۸۹/۷± بود. بنابراین می­توان نتیجه گرفت که انطباق قابل قبولی بین داده­های پیش­بینی شده و محاسبه شده، وجود دارد. 

Keywords [Persian]

  • روش المان محدود
  • هد برداشت دانه‌های شلتوک
  • واکاوی تنش
  • واکاوی کرنش
Abdulkarim, K., Abdulrahman, K., Ahmed, I., Abdulkareem, S., ADEBISI, J., & Harmanto, D. (2017). Finite element  analysis of mini combined harvester chassis and hitch. Journal of Production Engineering, 20, 48-54.
Azimi Nejadian, H. (2016).Design and fabrication of a head for paddy harvesting machine. (Master’s thesis, University of Tarbiat Modares, Tehran, Iran). (In Persian).
Azimi Nejadian, H., Tavakoli Hashjin, T., Ghobadian, B. & Hoseini, S. S., (2016). Measurement requirement force to separate the grain paddy for design of rice harvesting  head. Iranian Journal of Biosystems Engineering,47(2), 337-343. (In Persian).
Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181.
Beni, Y. T., Vahdati, A. R., & Abadyan, M. (2013). Using ALE-FEM to simulate the instability of beam-type nano-actuator in the presence of electrostatic field and dispersion forces. Iranian Journal of Science and Technology. Transactions of Mechanical Engineering, 37(M1), 1-9.
Bursi, O. S., & Jaspart, J. P. (1998). Basic issues in the finite element simulation of extended end plate connections. Computers & Structures, 69(3), 361-382.
Chandrajith, U. G., Gunathilake, D. M. C. C., Bandara, B. D. M. P., & Swarnasiri, D. P. C. (2016). Effects of combine harvesting on head rice yield and chaff content of long and short grain paddy harvest in Sri Lanka. Procedia Food Science, 6, 242-245.
Denguir, L. A., Outeiro, J. C., Rech, J., Fromentin, G., Vignal, V., & Besnard, R. (2017). Friction model for tool/work material contact applied to surface integrity prediction in orthogonal cutting simulation. Procedia CIRP, 58, 578-583.
Elsawaf, S. A., & Hassan, M. M. (2018). Behaviour of structural sub-assemblies of steel beams with openings in fire conditions. Journal of Constructional Steel Research, 148, 627-638.
Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., & Mairghany, M. (2019). Comparative field performances between conventional combine and mid-size combine in wetland rice cultivation. Heliyon, 5(4), 1-25.
Fadaei, A., & Mokhtari, H. (2015). Finite element modeling and experimental study of residual stresses in repair butt weld of ST-37 plates. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 39, 291-307.
Fu, L., Peng, J., Nan, Q., He, D., Yang, Y., & Cui, Y. (2016). Simulation of vibration harvesting mechanism for sea buckthorn. Engineering in Agriculture, Environment and Food, 9(1), 101-108.
Fu, Y. B., & Chui, C. K. (2014). Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress–strain data. Journal of Biomechanics, 47(10), 2430-2435.
Gao, S. (2019). Nonlinear finite element failure analysis of bolted steel-concrete composite frame under column-loss. Journal of Constructional Steel Research, 155, 62-76.
Harewood, F. J., & McHugh, P. E. (2007). Comparison of the implicit and explicit finite element methods using crystal plasticity. Computational Materials Science, 39(2), 481-494.
Heintze, S. D., Monreal, D., Reinhardt, M., Eser, A., Peschke, A., Reinshagen, J., & Rousson, V. (2018). Fatigue resistance of all-ceramic fixed partial dentures–Fatigue tests and finite element analysis. Dental Materials, 34(3), 494-507.
Horgan, F. G., Ramal, A. F., Bernal, C. C., Villegas, J. M., Stuart, A. M., & Almazan, M. L. (2016). Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Science, 6, 7-15.
Jahanbakhshi, A., & Heidarbeigi, K. (2019). Simulation and mechanical stress analysis of the lower link arm of a tractor using finite element method. Journal of Failure Analysis and Prevention, 19(6), 1666-1672.
Jahanbakhshi, A., Ghamari, B., & Heidarbeigi, K. (2017). Assessing acoustic emission in 1055I John Deere combine harvester using statistical and artificial intelligence methods. International Journal of Vehicle Noise and Vibration, 13(2), 105-117.
Jain, R., Pal, S. K., & Singh, S. B. (2018). Finite element simulation of pin shape influence on material flow, forces in friction stir welding. The International Journal of Advanced Manufacturing Technology, 94(5-8), 1781-1797.
Khanali, M., Jafari, A., Mobli, H., & Rajabipour, A. (2010). Analysis and design optimization of a frontal combine harvester axle using finite element and experimental methods. Journal of Food, Agriculture & Environment, 8(2), 359-364.
Kim, J., Yoon, J. C., & Kang, B. S. (2007). Finite element analysis and modeling of structure with bolted joints. Applied Mathematical Modelling, 31(5), 895-911.
Li, H., Zhao, G., & He, L. (2008). Finite element method based simulation of stress–strain field in the quenching process. Materials Science and Engineering: A, 478(1-2), 276-290.
McCarthy, M. A., McCarthy, C. T., Lawlor, V. P., & Stanley, W. F. (2005). Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part I—model development and validation. Composite Structures, 71(2), 140-158.
Motevali, A., Hashemi, S. J., & Tabatabaeekoloor, R. (2019). Environmental footprint study of white rice production chain-case study: Northern of Iran. Journal of Environmental Management241, 305-318.
Muntakim, A., Siddiquee, M., & Udagepola, K. (2016). Finite element simulation of the effect of loading rate on the stress-strain behaviour of Albany sand. Journal of the National Science Foundation of Sri Lanka, 44(2), 203-209.
Reid, J. D., & Hiser, N. R. (2005). Detailed modeling of bolted joints with slippage. Finite Elements in Analysis and Design, 41(6), 547-562.
Seyedabadi, E. (2015). Finite element analysis of lift arm of a MF-285 tractor three-point hitch. Journal of Failure Analysis and Prevention, 15(5), 737-743.
Shahani, A. R., Shakeri, I., & Kashani, H. M. (2015). Fatigue life estimation of bolts in flanges of a reinforced cylindrical shell. Modares Mechanical Engineering, 14(13),201-208. (In Persian).
Shaw, M. C., & Cookson, J. O. (2005). Metal cutting principles (Vol. 2). New York: Oxford University Press.
Shigley, J. E. (2011). Shigley's mechanical engineering design. New York:  Tata McGraw-Hill Education.
Soltani, P., & Mirhosseini, R. T. (2013). Study of non-linear dynamic behavior of structures with steel shear wall under the near fault earthquakes. Journal of Civil Engineering and Urbanism, 3(6), 372-379.
Tanlak, N., Sonmez, F. O., & Talay, E. (2011). Detailed and simplified models of bolted joints under impact loading. The Journal of Strain Analysis for Engineering Design, 46(3), 213-225.
Ucgul, M., Saunders, C., & Fielke, J. M. (2018). Comparison of the discrete element and finite element methods to model the interaction of soil and tool cutting edge. Biosystems Engineering, 169, 199-208.
Umbrello, D. (2008). Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. Journal of Materials Processing Technology, 196(1-3), 79-87.
Ushio, Y., Saruwatari, T., & Nagano, Y. (2019). Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast. Advances in Computational Design, 4(1), 53-72.
Yorgun, C., Dalcı, S., & Altay, G. A. (2004). Finite element modeling of bolted steel connections designed by double channel. Computers & structures, 82(29-30), 2563-2571.
Zhao, Z., Huang, H., Yin, J., & Yang, S. X. (2018). Dynamic analysis and reliability design of round baler feeding device for rice straw harvest. Biosystems Engineering, 174, 10-19.