Maize response to water, salinity and nitrogen levels: soil and plant ions accumulation

Document Type: Full Article

Authors

1 Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran Department of Water Science and Engineering, Ardakan University, Ardakan, I. R. Iran

2 Department of Water Engineering, College of Agriculture, Shiraz Drought Research Center, College of Agriculture, Shiraz University, Shiraz, I. R. Iran University, Shiraz, I. R. Iran

10.22099/iar.2018.26257.1251

Abstract

In the present study, some nutritional imbalances, specific ion toxicity and yield-ion concentration relationships in maize under water, nitrogen (N) and salinity stresses were assessed. Effect of different levels of irrigation water (I1=1.0ETc+0.25ETc as leaching, I2 =0.75I1 and I3 =0.5I1) as main plot, salinity of irrigation water (S1=0.6, S2= 2.0 and S3=4.0 dS m-1) as sub-plot and N fertilizer rates (N1=0, N2=150 and N3=300 kg N ha-1) as sub-sub-plot on maize (cv SC 704) were investigated in a split-split-plot design with three replications during 2009 and 2010. Results showed that salts accumulated in soil were 28.4% higher in I2 compared with other irrigation treatments. Soil nitrate concentration was statistically higher under I3 and S1 treatments (83% and 10%, respectively) compared with other irrigation and salinity levels. There was no K+ deficiency caused by salinity; however, salinity resulted in statistically lower K+/Na+ compared with no saline conditions. Plants took up 25% higher N in I2 compared with other irrigation levels. Furthermore, N uptake by plants decreased by an average of 18% under salinity condition indicating that higher N application rate above the required level under saline water application put the environment at the risk of groundwater N contamination. Results of this study confirmed the fact that Na+ accumulation in soil was more detrimental than Cl- accumulation for maize irrigated with saline water. Besides, according to threshold values for soil ions, the optimum levels of irrigation and N fertilizer for maize might be lower under saline water application. Furthermore, based on the grain yield reduction coefficient, maize required a higher level of K+ and K+/Na+ under deficit saline water irrigation for avoiding yield losses.

Keywords


Article Title [Persian]

واکنش ذرت به سطوح آب، شوری و نیتروژن: تجمع یون ها در خاک و گیاه

Authors [Persian]

  • ابوالفضل عزیزیان 1
  • علیرضا سپاسخواه 2
1 بخش مهندسی آب ، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران گروه علوم و مهندسی آب، دانشگاه اردکان، اردکان، ج. ا. ایران
2 بخش مهندسی آب ، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران مرکز مطالعات خشکسالی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

در این مطالعه برخی جنبه های عدم تعادل عناصر غذایی، سمیت ویژه یونی و ارتباط محصول با غلظت یون­ها برای گیاه ذرت تحت تیمارهای آب، ازت و شوری بررسی شد. اثر سطوح آب آبیاری ( 1.0ETc+0.25ETc=I1 بعنوان آبشویی، 0.75I1=I2 و 0.5I1=I3) بعنوان فاکتور اصلی، شوری آب آبیاری (0.6=S1، 2.0=S2 و 4.0 dS/m=S3) بعنوان فاکتور فرعی اول و ازت (0=N1، 150=N2 و 300 kg N ha-1=N3) بعنوان فاکتور فرعی دوم روی ذرت (رقم SC704) تحت یک آزمایش کرت­های دوبار خرد شده  در سه تکرار در سال-های 1388 و 1389 بررسی شد. نتایج نشان داد که تجمع املاح در خاک در تیمار I2 نسبت به دیگر تیمارهای آبیاری 4/28% بیشتر بود. غلظت نیترات خاک نیز در تیمارهای I3 و S1 نسبت به دیگر تیمارهای آب و شوری به ترتیب 83 و 10% بیشتر بود. هیچ­گونه کمبود K+ ناشی از شوری مشاهده نشد درحالی­که شوری منجر به کاهش معنی­دار نسبت K+/Na+ در مقایسه به بقیه تیمار‌ها گردید. گیاه در تیمار I2 نسبت به دیگر تیمارهای آبی 25% بیشتر ازت جذب کرد. بعلاوه جذب ازت توسط گیاه در شرایط کاربرد آب شور کاهش یافت که حاکی از خطر آلودگی آب زیرزمینی با نیترات آبشویی شده می­باشد. نتایج مؤید این واقعیت بود که تجمع Na+ در خاک نسبت به Cl- برای ذرت مضرتر است. همچنین حدود آستانه یونی در خاک حاکی از این بود که سطوح بهینه آب و ازت برای ذرت در شرایط شور ممکن است کمتر باشد. بعلاوه بر اساس شیب کاهش عملکرد، ذرت به مقادیر بیشتری از K+ و K+/Na+ برای عدم کاهش عملکرد ناشی در شرایط شور نیاز دارد.  

Keywords [Persian]

  • تجمع یونها
  • غلظت آستانه
  • تنش آبی
  • شوری و نیتروژن
  • کاهش عملکرد
 Amer, K. H. (2010). Corn crop response under managing different irrigation and salinity levels. Agricultural Water Management, 97, 1553-1563.
Ayers, R. S., & Westcot. D. W., (1985). Water quality for agriculture. Irrigation and Drainage Paper. No: 29. FAO, Rome.
Azizian, A., & Sepaskhah, A. R. (2014a). Maize response to different water, salinity and nitrogen levels: Agronomic behavior. International Journal of Plant Production, 8(1), 107-130.
Azizian, A., & Sepaskhah, A. R. (2014b). Maize response to different water, salinity and nitrogen levels: Yield-water relation, water-use and water uptake reduction function. International Journal of Plant Production, 8(2), 183-214.
Bar, Y., Apelbaum, A., Kafkafi, U., & Goren, R. (1997). Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. Journal of Plant Nutrition, 20, 715-731.
Bernstein, L., & Francois, L. E. (1975). Effects of frequency of sprinkling with saline waters compared with daily drip irrigation. Agronomy Journal, 67, 185-190.
Botella, M. A., Martinez, V., Pardines, J., & Cerdá, A. (1997). Salinity induced potassium deficiency in maize plants. Journal of Plant Physiology, 150, 200-205.
Chapman, H. D., & Pratt, P. F. (1961). Methods of analysis for soil, plants and water. CA, USA: University of California, Division of Agricultural Sciences.
Chow, W. S., Ball, M. C., & Anderson, J. M., (1990). Growth and photosynthetic responses of spinach to salinity: Implications of K+ nutrition for salt tolerance. Australian Journal of Plant Physiology, 17, 563-578.
 Feigin, A., Rylski, I., Meiri, A., & Shalhevet, J. (1987). Response of melon and tomato plants to chloride-nitrate ratios in saline nutrient solutions. Journal of Plant Nutrition, 10, 1787-1794.
Feigin, A., (1985). Fertilization management of crops irrigated with saline water. Plant and Soil, 89, 285-299.
Grattan, S. R., & Grieve, C. M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulture, 78, 127-157.
Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology, 31, 149-190.
Isla, R., & Aragüés, R. (2010). Yield and plant ion accumulation in maize (Zea mays L.) subjected to diurnal and nocturnal saline sprinkler irrigations. Field Crops Research, 116, 175-183. 
Kafkafi, U., Valoras, N., & Letey, J. (1982). Chloride interaction with nitrate and phosphate nutrition intomato (Lycopersicon esculentum L.). Journal of Plant Nutrition, 5, 1369-1385.
Lea-Cox, J. D., & Syvertsen, J. P. (1993). Salinity reduces water use and Nitrate-N-use efficiency of citrus. Annals of Botany, 72, 47-54.
Marschner, H., (1995). Mineral Nutrition of Higher Plants. London:.Academic Press.
Martinez, V., & Cerdá, A. (1989). Influence of N source on rate of Cl, N, Na, and K uptake by cucumber seedlings grown in saline conditions. Journal of Plant Nutrition, 12, 971-983.
Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance - current assessment. ASCE Journal of Irrigation and Drainage Division, 103, 115-134.
Min, W., Hou, Z. A., Ma, L. J., Zhang, W., Ru, S. B., & Ye, J. (2014). Effects of water salinity and N application rate on water- and N-use efficiency of cotton under drip irrigation. Journal of Arid land, 6, 454-467.
Noshadi, M., Fahandej, S., & Sepaskhah, A. R. (2013). Effects of salinity and irrigation water management on soil and tomato in drip irrigation. International Journal of Plant Production, 7, 295-312.
Osawa, T. (1963). Studies on the salt tolerance of vegetable crops with special reference to osmotic effects and specific ion effects. Journal of the Japanese Society of Horticultural Science, 32, 63-75.
Pérez-Alfocea, F., Estañ, M. T., Santa Cruz, A., & Bolarin, M. C. (1993). Effects of salinity on nitrate, total nitrogen, soluble protein and free amino acid levels in tomato plants. Journal of Horticultural Science, 68, 1021-1027.
Razzaghi, F., & Sepaskhah, A. R. (2012). Calibration and validation of four common ETo estimation equations by lysimeter data in a semi-arid environment. Archives of Agronomy and Soil Science, 58, 303-319.
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Handbook 60. U.S: Salinity Laboratory, U.S.D.A.
Sepaskhah, A. R, Kamgar-Haghighi A. A, Nazemossaddat S. M. J, & Illampour S. (1993). Crop production function and irrigation scheduling for wheat, sugar beet, cowpea and maize. Research Project Final Tale, Shiraz University, I. R. Iran. 42 p. (in Persian).
Shahrokhnia, M. H., & Sepaskhah, A. R. (2013). Single and dual crop coefficient and crop evapotranspiration for wheat and maize in a semi-arid region. Theoretical and Applied Climatology, 114, 495-510.
Sharpley, A. N., Meisinger, J. J., Power, J. F., & Suarez, D. L. (1992). Root extraction of nutrients associated with long-term soil management. In: Stewart, B. (Ed.), Advances in Soil Science, (pp. 151-217). New York, NY: Springer.
Suarez, D. L., Wood, J. D., & Lesch, S. M., (2008). Infiltration in to cropped soils: Effect of rain and sodium adsorption ratio–impacted irrigation water. Journal of Environmental Quality, 37, S-169-S-179.
Zand-Parsa, S., & Sepaskhah A. R., (2001). Optimal applied water and nitrogen for maize. Agricultural Water Management, 52, 73-85.