Tillage effects on energy use and greenhouse gas emission in wheat-cotton rotation

Document Type: Research Paper

Author

Department of Agricultural Engineering Research, Fars Research and Education Center for Agriculture and Natural Resources, AREEO, Shiraz, I. R. Iran

10.22099/iar.2019.33445.1350

Abstract

Crop production process utilizes input energy and produces some biomass energy as output.  During this process, greenhouse gases (GHGs) are also emitted which can make environmental risks. In this study, input and output energies, energy indices, and GHG emissions arising from inputs were estimated for wheat-cotton rotation under different tillage practices in Fars province. The study was conducted as a randomized complete plot experimental design with three tillage treatments and four replicates. Tillage methods included conventional tillage (CT), reduced tillage (RT), and no tillage (NT). Results showed that NT and RT decreased energy consumption in wheat and cotton production by 1.53 and 1.19%, respectively as compared to the CT due to less fuel and machinery utilization. More than 72% of energy requirement for wheat and cotton production was consumed by irrigation water and electricity for pumping irrigation water in all tillage methods. Conventional tillage resulted in the highest output energy, energy ratio, and energy productivity in wheat-cotton rotation compared to RT and NT. Total GHG emissions for wheat and cotton production were estimated to be 51829, 51608, and 51529 kg CO2e ha-1 in CT, RT, and NT, respectively indicating that NT and RT slightly reduced GHG emission compared to CT (0.6 and 0.4%, respectively). Results of this study indicated that irrigation showed the highest share in total energy requirement and GHG emission of wheat and cotton production in semi-arid climate condition of Fars province; therefore, total input energy and GHG emissions could be markedly reduced by using more efficient irrigation systems.    

Keywords


Article Title [Persian]

اثر خاک ورزی بر مصرف انرژی و انتشار گازهای گلخانه ای در تناوب گندم-پنبه

Author [Persian]

  • صادق افضلی نیا
بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ج. ا. ایران
Abstract [Persian]

-فرایند تولید محصولات کشاورزی با مصرف انرژی و تولید انرژی زیست توده به عنوان انرژی خروجی همراه است. در طی این فرایند، مقداری گاز گلخانه‌ای هم تولید می شود که محیط زیست را تهدید می کند. در این تحقیق، انرژی مصرفی و تولیدی، شاخص‌های انرژی و گازهای گلخانه‌ای متصاعد شده از مصرف انرژیهای ورودی در تناوب گندم-پنبه تحت تأثیر روش‌های مختلف خاک‌ورزی در استان فارس تعیین گردید. تحقیق در قالب طرح بلوک‌های کامل تصادفی با سه تیمار (روش‌های خاک‌ورزی) و چهار تکرار انجام شد. روش‌های خاک‌ورزی شامل خاک‌ورزی مرسوم (CT)، کم‌خاک‌ورزی (RT) و بی‌خاک‌ورزی (NT) بودند. نتایج نشان داد که روش‌های بی‌خاک‌ورزی و کم‌خاک‌ورزی انرژی مصرفی در تولید گندم و پنبه را نسبت به خاک‌ورزی مرسوم به ترتیب 53/1 و 19/1 درصد کاهش دادند که دلیل آن کاهش مصرف سوخت و ماشین‌های کشاورزی در این دو روش بود. بیش از 72 درصد از مصرف انرژی در تولید گندم و پنبه در تمام روش‌های خاک‌ورزی مربوط به آب آبیاری و برق مصرفی برای استحصال آب آبیاری بود. خاک‌ورزی مرسوم بیشترین انرژی تولیدی، راندمان انرژی و بهره‌وری انرژی را در تناوب گندم-پنبه به خود اختصاص داد. گازهای گلخانه‌ای متصاعد شده در تولید گندم و پنبه در روش‌های خاک‌ورزی مرسوم، کم‌خاک‌ورزی و بی‌خاک‌ورزی به ترتیب معادل 51829، 51608 و 51529 کیلوگرم گاز دی اکسید کربن در هکتار تخمین زده شد که نشان داد روش‌های بی‌خاک‌ورزی و کم‌خاک‌ورزی در مقایسه با روش خاک‌ورزی مرسوم تولید گازهای گلخانه‌ای را اندکی (به ترتیب 6/0 و 4/0 درصد) کاهش داده اند. همچنین، نتایج این تحقیق نشان داد که آبیاری بیشترین سهم را در انرژی مصرفی و گازهای گلخانه‌ای تولیدی در فرایند تولید گندم و پنبه در اقلیم نیمه خشک استان فارس داشت. بنابراین، استفاده از روش های آبیاری با راندمان بالا می تواند مصرف انرژی و تولید گازهای گلخانه ای را به مقدار قابل توجهی کاهش دهد. 

Keywords [Persian]

  • خاک ورزی حفاظتی
  • پنبه
  • شاخص های انرژی
  • گندم
REFERENCES
 
Abdalla, M., Osborne, B., Lanigan, G., Forristal, D., Williams, M., Smith, P., & Jones, M. B. (2013). Conservation tillage systems: A review of its consequences for greenhouse gas emissions. Soil Use and Management, 29, 1-11.
Anonymous. (2018). Australian National Greenhouse Accounts: National Greenhouse Accounts Factors. Canberra: Commonwealth of Australia. Retrieved from:  http://creativecommons.org/licenses/by/3.0/au.
Baillie, C. (2009). Energy and carbon accounting case study on Keytah, a project report for the Cotton Research and Development Corporation (CRDC). National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba. Retrieved from: https://eprints.usq.edu.au/23248/1/Keytah_Case_Study_Report.pdf.
Behnke, G. D., Zuber, S. M., Pittelkow, C. M., Nafziger, E. D., & Villamil, M. B. (2018). Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agriculture, Ecosystems and Environment, 261, 62–70.
Biswas, W. K., Barton, L., & Carter, D. (2008). Global warming potential of wheat production in Western Australia: a life cycle assessment. Water and Environment Journal, 22, 6-16.
Biswas, W. K., Graham, J., Kelly, K., & John, M. B. (2010). Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia: a life cycle assessment. Journal of Cleaner Production, 18 (14), 1386-1392.
Busaria, M. A., Kukal, S. S., Bhatt, R., & Dulazi, A. A. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research, 3, 119–129.
Dagistan, E., Akcaoz, H., Demirtas, B., & Yilmaz, Y. (2009). Energy usage and benefit-cost analysis of cotton production in Turkey. African Journal of Agricultural Research, 4 (7), 599-604.
Chen, G, & Baillie, C. (2009). Development of a framework and tool to assess on-farm energy uses of cotton production. Energy Conversion and Management, 50(5), 1256-1263.
Chen, G., Kupke, P., & Baillie, C. (2008). Opportunities to enhance energy efficiency and minimise greenhouse gases in Queensland’s intensive agricultural sector. National Centre for Engineering in Agriculture, Publication 1002801/1, USQ, Toowoomba.
Chen, G., Maraseni, T., Banhazi, T., & Bundschuh, J.  (2015). Benchmarking energy use on farm. Rural
Industries Research and Development Corporation (RIRDC) Publication No 15/059.
Ghareei Khabbaz, B. (2010). Life cycle energy use and greenhouse gas emissions of Australian cotton: impact
of farming systems. M.Sc. thesis, University of Southern Queensland, Australaia.
Khan, S., Khan, M. A., & Latif, N. (2010). Energy requirements and economic analysis of wheat, rice and barley production in Australia. Soil and Environment, 29(1), 61-68.
Khoshnevisan, B.,  Rafiee, Sh.,  Omid, M., Yousefi, M., & Movahedi, M. (2013). Modelling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52, 333-338.
Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR Handbook of Agricultural Engineers, vol. V: Energy and Biomass Engineering (1st ed.).  MI.: American Society of Agricultural Engineers (ASAE) Publication.
Krauss, M., Ruser, R., Müllerb, T., Hansen, S., Mädera, P., & Gattinger, A. (2017). Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence. Agriculture, Ecosystems and Environment, 239, 324-333.
Lal, R. (2004). Carbon emission from farm operation. Environment International, 30: 981-990. 
Mangalassery, Sh., Sofie Sjögersten, S., Sparkes, D. L., Sturrock, C. J., Craigon, J., & Mooney, S. J. (2014). To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Scientific Reports, 4, 1-8.
Maraseni, T. N, & Cockfield, G. (2011). Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia. Agriculture Systems, 104, 451-458.
Maraseni, T. N, Cockfield, G., and Apan, A. (2007). A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia. Journal of Environmental Science and Health, Part A, 42, 11-19.
Maraseni, T. N, Cockfield, G., & Maroulis, J. (2010). An assessment of greenhouse gas emissions: implications for the Australian cotton industry. Journal of Agricultural Science, 148, 501-510.
Millar, N., Urrea, A., Kahmark, K., Shcherbak, I., Robertson, G. P., & Ortiz-Monasterio, I. (2018). Nitrous oxide (N2O) flux responds exponentially to nitrogen fertilizer in irrigated wheat in the Yaqui Valley, Mexico. Agriculture, Ecosystems and Environment, 261, 125–132.
O’Halloran, N. J., Fisher, P. D., & Rab, M. A. 2008. Vegetable industry carbon footprint scoping study preliminary estimation of the carbon footprint of the Australian vegetable industry. Discussion Paper 4. Sydney: Horticulture Australia Ltd.
Pishgar-Komleh, S. H., Keyhani, A., Rafiee, Sh., & Sefeedpary, P. (2011). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy, 36, 3335-3341.
Pishgar-Komleh, S. H., Sefeedpari, P., & Ghahderijani, M. (2012). Exploring energy consumption and CO2 emission of cotton production in Iran. Journal of Renewable and Sustainable Energy, 4, 1-14.
Safa, M., & Samarasinghe, S. (2011). Determination and modelling of energy consumption in wheat production using neural networks: A case study in Canterbury province, New Zealand. Energy, 36 (8), 5140-5147.
Shahin, S., Jafari, A., Mobli, H., Rafiee, S., & Karimi M. (2008). Effect of farm size on energy ratio for wheat production: A case study from Ardabil province of Iran. American-Eurasian Journal of Agricultural and Environmental Science, 3 (4), 604-608.
Tsatsarelis, C. A. (1991). Energy requirements for cotton production in central Greece. Journal of Agricultural Engineering Research, 50, 239-246.
 Tsatsarelis, C. A. (1993). Energy inputs and outputs for soft winter wheat production in Greece. Agriculture, Ecosystems and Environment, 43(2), 109-118.
Yilmaz, I., Akcaoz, H., & Ozkan, B. (2005). An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 30, 145–155.
Yildiz, T. (2016). An input-output energy analysis of wheat production in Çarşamba district of Samsun province. Journal of Agricultural Faculty of Gaziosmanpasa University, 33(3), 10-20.