Influence of poultry manure and its biochar, Funneliformis mosseae and salinity stress on corn yield and micronutrients concentration

Document Type: Full Article

Authors

Department of soil science, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

Direct use of poultry manure (PM) as an organic fertilizer in agriculture may cause environmental concerns; therefore, application of its biochar might be an effective solution. A greenhouse experiment was conducted to investigate the influence of PM and its biochar (PMB) (control, 1% and 2% PM (w/w), 1% and 2% (W/W) PMB) on the growth and micronutrients concentration of corn under salinity stress (0.5, 3.6, 7.9 and 12.4 dS m-1) in the presence or absence of arbuscular mycorrhizal fungus (AMF) (Funneliformis mosseae). Results indicated that application of PM and PMB significantly increased corn shoot dry weight (SDW) compared to that of control in non-AMF plants. However, SDW was higher in PMB application compared to that of PM by 15% and 8% for 1% and 2% (w/w) application rates, respectively. In AMF-plants, addition of 2% PMB had no significant effect on SDW compared to that of control. Hence, co-application of PMB (2%), and AMF did not increase SDW due to the fact that AMF was ineffective to enhance corn yield (at high phosphorous (P) concentration in 2% PMB rate). Salinity stress, at low levels (3.6 and 7.9 dS m-1), increased SDW of corn but at a higher level (12.4 dS m-1), decreased it significantly, in both non-AMF and AMF plants. In general, shoot micronutrients concentration (except for Cu) significantly increased along with increasing soil ECe levels in AMF and AMF plants. In non-AMF plants, only addition of 2% PMB increased shoot Mn concentration by 20% compared to that of control. However, in AMF plants, application of PM (2%) and PMB (1% and 2%) decreased Mn concentration by 27%, 16%, and 9% compared to those of control treatment, respectively. Poultry manure biochar increased corn shoot Zn, Cu and Fe concentrations compared to those of control due to the higher concentration of these nutrients in biochar compared to PM. In conclusion, pyrolysis of PM almost eliminated foul odor of PM and increased dry matter yield of corn.

Keywords


Article Title [Persian]

اثر کود مرغی و بیوچار آن، Funneliformis mosseae و تنش شوری بر عملکرد و غلظت عناصر کم مصرف گیاه ذرت

Authors [Persian]

  • راضیه کاظمی
  • عبدالمجید رونقی
  • جعفر یثربی
  • رضا قاسمی فسایی
  • مهدی زارعی
گروه مهندسی خاک، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
Abstract [Persian]

-
-استفاده مستقیم از کود مرغی به عنوان کود آلی در کشاورزی ممکن است باعث نگرانی‌های محیط زیستی گردد؛ بنابراین بکاربردن بیوچار آن ممکن است راه حل موثری باشد. یک آزمایش گلخانه‌ای به منظور بررسی اثر کود مرغی و بیوچار آن )عدم مصرف ماده آلی بعنوان کنترل، %1 و %2 (w/w) کود مرغی، و %1 و %2  (w/w)بیوچار کود مرغی) بر رشد و غلظت عناصر کم مصرف گیاه ذرت تحت تنش شوری ( 0، 6/3، 9/7، و 4/12 دسی‌زیمنس بر متر) در حضور و عدم حضور قارچ  میکوریزا آربوسکولار (Funneliformis mosseae) انجام شد. نتایج نشان داد که در تیمار بدون قارچ، کاربرد کود مرغی و بیوچار آن به طور معنی‌داری وزن خشک اندام هوایی را نسبت به تیمار شاهد افزایش داده است. با  کاربرد بیوچار وزن خشک اندام هوایی در حدود 15 و 8 درصد به ترتیب در تیمارهای 1 و 2 درصد در مقایسه با کود مرغی افزایش بیشتری نشان داد. در تیمار قارچ، اضافه کردن 2% بیوچار کودمرغی اثر معنی‌داری بر وزن خشک اندام هوایی نسبت به تیمار شاهد نداشت. ازاین رو، کاربرد همزمان سطح بالای بیوچار کودمرغی (2%) با قارچ در افزایش رشد گیاه، به دلیل بی اثر بودن قارچ بر افزایش عملکرد در سطح بالای فسفر در سطح 2% بیوچار کود مرغی ، مفید نبود. در گیاهان با و بدون قارچ، تنش شوری در سطوح پایین (6/3، 9/7   دسی‌زیمنس بر متر) ،  وزن خشک اندام هوایی را افزایش داد اما در سطح بالا (4/12 دسی‌زیمنس بر متر)  باعث کاهش معنی‌دار آن گردید. به طور کلی، در گیاهان با و بدون قارچ، غلظت عناصر کم مصرف اندام هوایی ( به غیر از مس) با افزایش سطوح شوری به طور معنی‌داری افزایش یافت. در تیمار بدون قارچ تنها کاربرد بیوچار%2 غلظت منگنز را نسبت به تیمار شاهد به میزان 20 درصد افزایش داد. در تیمارهای با قارچ، اضافه کردن کود مرغی %1، بیوچار 1و 2% غلظت منگز اندام هوایی را به ترتیب به میزان 27، 16 و 9 درصد نسبت به تیمار شاهد کاهش داد. کاربرد بیوچار کود مرغی غلظت آهن، روی و مس اندام هوایی را به دلیل غلظت بالای این عناصر غذایی در بیوچار در مقایسه با کود مرغی نسبت به تیمار شاهد افزایش دادند. به طور کلی، پیرولیز کود مرغی به منظور کاهش بوی بد کود مرغی و بهبود خواص آن جهت افزایش رشد گیاه ذرت مفید تشخیص داده شد.

Keywords [Persian]

  • قارچ میکوریزا آربوسکولار
  • کود آلی
  • غلظت عناصر کم مصرف
  • پیرولیز
  • سدیم کلرید
 Abdullahi, R., Lihan, S., & Edward, R. (2015). Effect of arbuscularmycorrhizal fungi and poultry manure on growth and nutrients uptake by maize under field condition. International Journal of Agriculture Innovations and Research. 4(1), 158-163.
Al- Karaki, G. N. (2000). Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, 10(2), 51-54.
Andriolo, J. L., Luz, G. L. D., Witter, M. H., Godoi, R. D. S., Barros, G. T., & Bortolotto, O. C. (2005). Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23(4), 931-934.
Arif, M., Ali, K., Jan, M. T., Shah, Z., Jones, D. L., & Quilliam, R. S. (2016). Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crops Research, 195, 28-35.
 Balzergue, C., Chabaud, M., Barker, D. G., Bécard, G., & Rochange, S. F. (2013). High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science, 4, 1-15.
Basiri Jahromi N, Walker, F.R., Fulcher, A., Altland, J. E., Wright, W. (2018) Growth response, mineral nutrition, and water utilization of container-grown woody ornamentals grown in biochar-amended pine bark. HortScience, 53, 347-353.
Bitzer, C. C., & Sims, J. T. (1988). Estimating the availability of nitrogen in poultry manure through laboratory and field studies. Journal of Environmental Quality, 17, 47-54.
Bouyoucos, C. J. (1962). Hydrometer method for making particle-size analysis for soils. Agronomy Journal, 54, 464-465.
Bremner, J. M. (1996). Nitrogen total. In Sparks, D. L., (Ed), Methods of Soil Analysis part 3: Chemical methods (pp: 1085-1122). Madison, WI: Soil Science Society of America & America Society of Agronomy.
Carreón-Abud, Y., Vega-Fraga, M., & Gavito, M. E. (2015). Interaction of arbuscular mycorrhizal inoculants and chicken manure in avocado rootstock production.
Journal of Soil Science and Plant Nutrition, 15(4), 867-881.
Chapman, H. D. & Pratt, D. F. (1961). Methods of analysis for soil, plant, and water. California: University of California Division of Agricultural Science. p. 60.
Chun, Y., Sheng, G. Y., Chiou C. T., & Xing, B. S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology, 38, 4649-4655.
de Oliveira, J. R. G., de Resende, G. M., de Melo, N. F., & Yano-Melo, A. M. (2017). Symbiotic compatibility between arbuscular mycorrhizal fungi (autoctone or
exotic) and three native species of the Caatinga in different phosphorus levels. Acta Scientiarum. Biological Sciences, 39(1), 59-69.
Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104(7), 1263-1280.
Forján, R., Rodríguez-Vila, A., Pedrol, N., & Covelo, E. F. (2017). Application of compost and biochar with Brassica juncea L. to reduce phytoavailable concentrations in a settling pond mine soil. Waste and Biomass Valorization, 9(5), 821-834.
Gosling, P., Hodge, A., Goodlass, G., & Bending, G. D. (2006). Arbuscular mycorrhizal fungi and organic farming. Agriculture, Ecosystems & Environment, 113(1), 17-35.
Gosling, P., Mead, A., Proctor, M., Hammond, J. P., & Bending, G. D. (2013). Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytologist, 198(2), 546-556.
Gunes, A., Inal, A., Sahin, O., Taskin, M. B., Atakol, O., & Yilmaz, N. (2015). Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use and Management, 31(4), 429-437.
Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., & Atakol, A. (2014). Effect of phosphorus‐enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management, 30(2), 182-188.
Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In Sparks, D. L., (Ed), Methods of soil analysis Part 3 (pp: 551-573). Madison, WI: Soil Science Society of America & America Society of Agronomy.
Inal, A., Gunes, A., Sahin, O., Taskin, M. B., & Kaya, E. C. (2015). Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management, 31(1), 106-113.
Ippolito, J. A., Berry, C. M., Strawn, D. G., Novak, J. M., Levine, J., & Harley, A. (2017). Biochars reduce mine land soil bioavailable metals. Journal of Environmental Quality, 46(2), 411-419.
Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental benefits of biochar. Journal of environmental quality, 41(4), 967-972.
Khaliq, T. A. S. N. E. E. M., Mahmood, T. A. R. I. Q., Kamal, J. A. V. E. D., & Masood, A. M. I. R. (2004). Effectiveness of farmyard manure, poultry manure and nitrogen for corn (Zea mays L.) productivity. International  Journal of  Agriculture and Biology, 2, 260-263.
Konieczny, A., & Kowalska, I. (2017). Effect of arbuscular mycorrhizal fungi on the content of zinc in lettuce grown at two phosphorus levels and an elevated zinc level in a nutrient solution. Journal of Elementology, 22(2), 761-772.
Kormanik, P. P. & McGraw, A. C. (1982). Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and Principles of Mycorrhizal Research(Ed.), N. C. Schenck, (pp.37-45). St Paul, Minnesota: The American Phytopathological Society.
Laghari, M., Naidu, R., Xiao, B., Hu, Z., Mirjat, M. S., Hu, M., & Abudi, Z. N. (2016). Recent developments in biochar as an effective tool for agricultural soil management: a review. Journal of the Science of Food and Agriculture, 96(15), 4840-4849.
Lambert, D. H., Baker, D. E., & Cole, H. (1979). The role of mycorrhizae in the interactions of phosphorus with zinc, copper, and other elements. Soil Science Society of America Journal, 43(5), 976-980.
Lehman, A., & Rillig, M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops–a meta-analysis. Soil Biology and Biochemistry, 81, 147-158.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
Loppert, R. H., & Suarez D. L. (1996). Carbonate and gypsum. In Klute, A. et al. (Eds.) Methods of soil analysis. Part 3. 3rd ed. (pp. 437-474). WI: American Society of Agronomy, Madison.
Nedjimi, B., Daoud, Y., & Touati, M. (2006). Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2. Communications in Biometry and Crop Science, 1(2), 79-89.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In Sparks, D.L., (Ed.), Methods of Soil Analysis part 3: Chemical methods. (pp: 961-1010). WI: Soil Science Society of America & America Society of Agronomy, Madison.
Parker, M. B., Perkins, H. F., & Fuller, H. L. (1959). Nitrogen, phosphorus and potassium content of poultry manure and some factors influencing its composition. Poultry Science, 38(5), 1154-1158.
Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: A review. Land Degradation & Development, 11(6), 501-521.
Qados, A. M. A. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10(1), 7-15.
Rakiya, A., Lihan, S., & Edward, R. (2015). Effect of arbuscular mycorrhizal fungi and poultry manure on growth and nutrients uptake by maize under field condition. International Journal of Agriculture Innovations and Research, 4(1), 158-163.roots
Sahin, O., Taskin, M. B., Kadioglu, Y. K., Inal, A., Pilbeam, D. J., & Gunes, A. (2014). Elemental composition of pepper plants fertilized with pelletized poultry manure. Journal of Plant Nutrition, 37(3), 458-468.
Sheikhi J, Ronaghi A. (2012). Growth and macro and micronutrients concentration in spinach (Spinacia oleracea L.) as influenced by salinity and nitrogen rates. International Research Journal of Applied and Basic Sciences, 3, 770-777.
Shortall, J. G., & Liebhardt, W. C. (1975). Yield and growth of corn as affected by poultry manure 1. Journal of Environmental Quality, 4(2), 186-191.
Smith, S. E., & Read, D. J. (2008).Mycorrhizal symbiosis, 3rd Edn. London: Academic Press.
Summer, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficient. In Sparks, D.L., (Ed), Methods of Soil Analysis Part 3: Chemical Methods (pp:1201-1230). Soil Science Society of America & Madison, WI: America Society of Agronomy.
Tarkalson, D. D., Jolley, V. D., Robbins, C. W., & Terry, R. E. (1998). Mycorrhizal colonization and nutrition of wheat and sweet corn grown in manure‐treated and untreated topsoil and subsoil. Journal of Plant nutrition, 21(9), 1985-1999.
Watanabe, F. S. & Olsen, S.R. (1965). Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from the Soil. Soil Science Society of America Journal, 29, 677-678.
Xu, Z., Ban, Y., Yang, R., Zhang, X., Chen, H., & Tang, M. (2016). Impact of funneliformis mosseae on the growth, lead uptake, and localization of Sophora viciifolia. Canadian Journal of Microbiology, 62(4), 361-373.
Yang, S. J., Zhang, Z. L., Xue, Y. X., Zhang, Z. F., & Shi, S. Y. (2014). Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings. Botanical Studies, 55, 70.
Yuan JH Xu RK, Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperature. Bioresource Technology. 102, 3488-3497.
Zarei, M., Saleh-Rastin N., Salehi Jouzani, GH., Savaghebi, GH., & Buscot F. (2008). Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 44, 381-391.
Zhu, J. K. (2001). "Plant salt tolerance". Trends in Plant Science, 6(2), 66-71.