Evaluation of wheat genotypes under tillage practices: application of technique for order preference by similarity to ideal solution method

Document Type: Full Article

Authors

1 Department of Seed and Plant Improvement Research, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, I. R. Iran

2 Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

3 Department of Agricultural Economy, Social, Extension Research, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, I. R. Iran.

Abstract

Adoption of conservative agriculture at farm level is associated with reducing the production costs and leads to crop yield stability. The aim of this study was to prioritize experimental treatments based on different criteria by applying "technique for order preference by similarity to ideal solution" (TOPSIS).A filed experiment was carried out at Zarghan research station, Fars province, Iran, during 2014-2016 growing seasons. Experimental treatments were three tillage practices including conventional tillage (CT), reduced tillage (RT) and no tillage (NT) that were assigned to main plots and four spring wheat genotypes (Chamran, Sirvan, Picaflor#1 and M-89-10)were randomized in subplots using split-plot arrangements in randomized complete block design with three replications. Selected criteria including two groups of economic- i.e. water cost, weed control cost, production cost and gross margin- and agronomic –i.e. grain yield and soil bulk density criteria used to prioritize the treatments. The weights of bulk density (0.040), grain yield (0.180), gross margin (0.280), water cost (0.0270), weed control cost (0.150), and production cost (0.080) was calculated. Results showed, considering all criteria to prioritize wheat genotypes under different tillage practices, that Sirvan and Picaflor#1 genotypes under RT practice could be the first treatments in 2014-15 and 2015-16 growing seasons, respectively. Therefore, the multiple criteriamethodshould be used for selection of the best tillage practices and wheat genotypes under tillage practices rather than a criterion such as grain yield or production cost.

Keywords


Article Title [Persian]

ارزیابی ژنوتیپ های گندم در سامانه های خاک ورزی:کاربرد تکنیک الویت بندی بر اساس نزدیکی به پاسخ ایده ال

Authors [Persian]

  • شکوفه ساریخانی خرمی 1
  • سید عبدالرضا کاظمینی 2
  • ابراهیم زارع 3
  • محمد جعفر بحرانی 2
1 بخش تحقیقات زراعی و باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ج. ا. ایران
2 بخش زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران
3 بخش تحقیقات اقتصادی اجتماعی و ترویجی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، شیراز، ج. ا. ایران
Abstract [Persian]

پذیرش سامانه­های کشاورزی حفاظتی در سطح مزارع کشاورزان به میزان هزینه­های  تولید و پایداری بیش­تر عملکرد بستگی دارد. هدف این پژوهش،اولویت بندی تیمارها با معیارهای انتخاب شده  با استفاده از تکنیک اولویت­بندی بر اساس نزدیکی به پاسخ  ایده آل (TOPSIS)می­باشد. این پژوهش در ایستگاه تحقیقاتی زرقان، استان فارس، ایران در طی دو سال زراعی 95-1393 اجرا گردید.این آزمایش به صورت کرت­های خرد شده در قالب طرح بلوک­های کامل تصادفی در سه تکرار اجرا شد. تیمارهای آزمایشی شامل سامانه­های مختلف خاک­ورزی (مرسوم، کم خاک­ورزی و بی ­خاک­ورزی) به عنوان کرت اصلی و ژنوتیپ­های گندم بهاره(چمران، سیروان، پیکافلوریک و M-89-10 )به عنوان کرت فرعی بودند.معیارهای انتخاب شده شامل دو گروه زراعی مانند وزن مخصوص ظاهری خاک، عملکرد دانه و گروه اقتصادی مانند درآمد ناخالص، هزینه های کنترل علف های هرز، آب  و تولید بودند.  وزن معیارهای وزن مخصوص ظاهری خاک (040/0)، عملکرد دانه ( 180/0)، بازده ناخالص (280/0)، هزینه آب (0270/0)، هزینه کنترل علف های هرز (150/0) و هزینه تولید( 080/0) بدست آمد.نتایج نشان داد که با در نظر گرفتن همه معیارها، اولین الویت متعلق به ژنوتیپ های سیروان و پیکافلوریک در سامانه کم خاک­ورزی به ترتیب در سال­های اول و دوم آزمایش بود. بنابراین استفاده از تکنیک های چند معیاره به جای تک معیار مانند عملکرد دانه و یا هزینه تولید، جهت انتخاب  بهترین سامانه خاک­ورزی و برترین ژنوتیپ گندم در سامانه های خاک­ورزی توصیه می­گردد.

Keywords [Persian]

  • سامانه مرسوم
  • کم خاک‌ورزی
  • بی‌خاک‌ورزی
  • روش تاپسیس
  • عملکرد گندم

Alijani, K., Bahrani, M. J., & Kazemeini, S. A. (2012). hort-term responses of soil and wheat yield to tillage, corn residue management, and nitrogen fertilization. Soil and Tillage Research, 124, 78-82. doi:10. 1080/ 03650340. 2015.1066929.

 

 

 

 

 

 

Antucheviciene, J., Zavadskas, E. K., & Zakarevicius, A. (2010). Multiple criteria construction management decisions considering relations between criteria. Technological and Economic Development of Economy,16, 109-125. do:10.3846/tede.2010.07.

 

 

Bhushan, L., Ladha, J. K., Gupta, R. K., Singh, S., Tirol-Padre, A., Saharawat, Y. S., Gathala, M., & Pathak, H. (2007). Saving of water and labor in a rice–wheat system with no-tillage and direct seeding technologies. Agronomy Journal, 99, 1288–1296. doi:10.2134/agronj2006.0227.

Blake, G.R., Hartge, K.H. Bulk density. (1986). In Methods of Soil Analysis,Part 1Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy—Soil Science Society of America, Madison, Wisconsin, USA, 9(2), pp. 363-382.

Cardina, J., Herms, C. P., & Doohan, D. J. (2002). Crop rotation and tillage system effects on weed seed banks. Weed Science, 50, 448–460.  doi:10.1614/0043-1745(2002)050[0448: RATSE]2.0.CO;2.

Carter M. R., & Ivany, J. A. (2006). Weed seed bank composition under three long-term tillage regimes on a fine sandy loam in Atlantic Canada. Soil and Tillage

Research, 90, 29–38. doi.org/10.1016/S0167-1987(02)00043-0.

Chen, G., Weil, R. R., & Hill, R. L. (2014). Effects of compaction and cover crops on soil least limiting water

range and air permeability. Soil and Tillage Research, 136, 61–69. doi:10.1016/j.still.2013.09.004.

Conn, J. S. (2006). Weed seed bank affected by tillage intensity for barley in Alaska. Soil and Tillage Research, 90, 156–161. doi:0.1016/j.still.2005.08.014.

doi:10.1016/j.still.2005.02.030.

Erfanifard. S., Zibaei, M., & Kasraei, M. (2014). Investigation of socioeconomic factors affecting the adoption of modern technology of conservation tillage in Darab Region (Application of Multiple Logit Model). Journal of Agricultural Economics and Development, 28(3), 197-203. (In Persian)

Fabrizzi, K. P., Garcia, F. O., Costa, J. L., & Picone, L. I. (2005). Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research, 81, 57-69. doi:10.1016/j.still.2004.05.00.1.

Fisher, J. A. & Monahan, T. (2008), Tracking the social dimensions of RFID systems in hospitals. International journal of Medical Informatics, 77, 176-183. doi:10.1016/j.ijmedinf.2007.04.010.

Fulop, J. (2005). Introduction to decision making methods. BDEI-3 Workshop, December 13–15, Olympia, Washington.

Gathala, M. K., Ladha, J. K., Saharawat, Y. S., Kumar, V., Kumar, V., & Sharma, P. K. (2011). Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice–wheat rotation. Soil Science Society of America Journal, 75, 1851–1862. doi:10.2136/sssaj2010.0362.

Ghaghazardi, H. R., Jahansouz, M. R., Ahmadi, A., & Gorji, M. (2016). Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil and Tillage Research, 162, 26–33. doi:10.1016/j.still.2016.04.010.

Hajkowicz, S., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water resources management, 21(9), 1553-1566. doi:10.1007/s11269-006-9112-5.

Hemmat, A., & Eskandari, I. (2004a). Tillage system effects upon productivity of a dryland winter wheat–chickpea rotation in the northwest region of Iran. Soil and Tillage Research, 78, 69–81. doi:10.1016/j.still.2004.02.013.

Hosseini, P., Karimi, H., Babaei, S., Rahimian Mashhadi H., & Oveisi, M. (2014). Weed seed bank as affected by crop rotation and disturbance. Crop Protection, 64, 1-6. doi:10.1016/j.cropro.2014.05.022.

Jat, H. S., Singh, G., Singh, R., Choudhary, M., Jat, M. L., Gathala, M. K., & Sharma, D. K. (2015). Management influence on maize–wheat system performance, water productivity and soil biology. Soil Use Management, 1-10. doi:10.1111/sum.12208.

Jat, M. L., Gathala, M. K, Ladha, J. K., Saharawat, Y. S., Jat. A. S., Kumar, Vipin., Sharma, S. K., Kumar, V., & Gupta, R. (2009). Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil and Tillage Research, 105, 112–121. doi: 10.1016/j.still.2009.06

 

.003.

Jat, M. L., Gathala, M. K., Saharawat, Y. S., Tetarwale, J. P., Gupta, R., & Singh, Y.  (2013).  Double no-till and permanent raised beds in maize–wheat rotation of north-western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crops Research, 149, 291–299. doi:10.1016/j.fcr.2013.04.024.

Jin, H., Hongwen, L., Xiaoyan, W., McHugh, A. D., Wenying, L., Huanwen, G., & Kuhn, N. J. (2007). The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil and Tillage Research, 94, 493–502. doi:10.1016/j.still.2006.10.005.

Jin, K., Shen, J., Ashton, R. W., Dodd, I. C., Parry, M. A. J., & Whalley, W. R. (2013). How do roots elongate in a structured soil? Journal of Experimental Botany, 64, 4761–4777.doi:10.1093/jxb/ert286.

Kuncoro, P. H., Koga, K., Satta, N., & Muto, Y. (2014). A study on the effect of compaction on transport properties of soil gas and water. II: soil pore structure indices. Soil and Tillage Research, 143, 180–187. doi:10.1016/j.still.2014.01.008.

Lutman, P. J. W., Cussans, G. W., Wright, K. J., Wilson, B. J., Wright, G. Mc. N., & Lawson H. M. (2002). The persistence of seeds of 16 weed species over six years in two arable fields. Weed Research, 42, 231–241. doi:10.1046/j.1365-3180.2002.00281.x.

Michael, A. M., & Ojha, T. P. (1987). Principles of Agricultural Engineering. Vol. I, Jain Brothers Publishers, New Delhi, P. 638. ISBN 10: 8186321632 / ISBN 13: 9788186321638.

Mohler, C. L., & Callaway, M. B. (1995). Effects of tillage and mulch on weed seed production and seed banks in sweet corn. Journal of Applied Ecology, 32, 627-639. doi:10.2307/2404658.

Mohler, C. L., Frisch, J. C., & McCulloch, C. E. (2006). Vertical movement of weed seed surrogates by tillage implements and natural processes. Soil and Tillage Research, 86: 110–122.

Mosaddeghi, M. R., Mahboubi, A. A., & Safadoust, A. (2009). Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil and Tillage Research, 104, 173–179. doi:10.1016/j.still.2008.10.011.

Pask, A. (2012). Determining key developmental stages. In:  Physiological breeding II: A field guide to wheat phenotyping. Pask, A., Petragella, J., Debra, M., & Reynolds, M. (Eds), International Maize and Wheat Improvement Center (CIMMYT). Mexico, pp. 72-79, ISBN:978-970-648-182-5.

Rabiee, M., & Rajabian, M. (2012). Effect of tillage systems and rice residue management on morphological traits and yield of winter rapeseed (Brassica napus L.) as second crop after rice in Rasht. Journal of Agricultural Science and Sustainable Production. 21(4), 106-121. (In Persian)

Romero, C., & Rehman, T. (1987). Natural resource management and the use of multiple criteria decision making techniques: A Review. European Review of Agricultural Economics, 14(1), 61‑89.

Saaty, R. W. (1987). The analytic hierarchy process- what it is and how it is used? Mathematical Modelling, 9(3), 161-176. doi:10.1016/0270-0255(87)90473-8.

Saharawat, Y. S., Singh, B., Malik, R. K., Ladha, J. K., Gathala, M., Jat, M. L., & Kumar, V. (2010). Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Research, 116, 260–267. doi:10.1016/j.fcr.2010.01.003.

Sharma, P., Abrol, V., & Sharma, R. K. (2011). Impact of tillage and mulch management on economics energy requirement and crop performance in maize–wheat rotation in rainfed subhumid inceptisols, India. European Journal of Agronomy, 34, 46–51. doi: 10. 1016/ j. eja. 2010. 10.003.

Srdjevic, B., Medeiros, Y., & Faria, A. (2004). An objective multi‐criteria evaluation of water management scenarios. Water Resource Management, 18 (1), 35–54. doi: 10. 1023/ B: WARM. 0000015348. 88832.52.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Su, Z., Zhang, J., Wu, W., Lv, J., Jiang, G., Huang, J., Gao, J., Hartmann, R., & Gabriels, D. (2006).  Effects of conservation tillage practices on winter wheat water use efficiency and crop yield on the Loess Plateau, China. =/, 87, 307–314.doi: 10.1016/j.agwat.2006.08.005.

Taser, O., & Metinoglu, F. (2005). Physical and mechanical properties of a clay soil as affected by tillage systems for wheat growth. Acta Agriculturae Scandinavica Section B: Soil Plant Science, 55, 186–191.doi:10.1080/09064710510008702.

Tzeng, G.H., & Huang, J.J. (2011). Multiple attribute decision making: method and applications, CRC press. P. 335, ISBN:978-1-4398-6157-8.

Uri, N. D. (2000). An evaluation of the economic benefits and costs of conservation tillage. Environmental Geology, 39 (3–4), 238-248.doi:10.1007/s002540050004.

Zentner, R.P., McConkey, B.G., Campbell, C.A., Dyck, F.B., & Selles, F. (1996). Economics of conservation tillage in the semiarid prairie. Canadian Journal of Plant Science, 76, 697-705. doi:10.4141/cjps96-121.