Reducing nitrogen fertilization application in Cucumber by mycorrhiza colonization of the plant

Document Type : Full Article

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan I. R. Iran

Abstract

The effect of different nitrogen levels on plant growth, phenol content, antioxidant and Nitrate reductase )NR) activity of cucumber (Cucumis sativus cv. Super) inoculated with mycorrhiza­ was studied. A factorial experiment based on a completely randomized design (CRD) with 6 replicates was designed. Treatments were three levels of nitrogen (NO3-50, NO3-75 and NO3-100) and two mycorrhiza inocula (1000 spore (AM1), 2000 spore (AM2) and no mycorrhiza treatment (AM0) as the control. Results showed that the root fresh weight increased by mycorrhiza inoculation at all nitrogen levels, while it was unaffected by nitrogen levels and mycorrhiza inoculation. FV/FM was higher in NO3-75 mycorrhizal inoculated plants compared to that of AM0 ones. Antioxidant activity of plants increased due to mycorrhiza symbiosis in nitrogen deficiency treatments, so that AM1 and AM2 increased antioxidant activity in NO3-50 and NO3-75 treatments, respectively, as compared to the AM0 plants. The highest NR activity was observed in the NO3-50 treatment. However, mycorrhiza inoculation decreased NR activity of the plants at all nitrogen levels. Therefore, it can be concluded that mycorrhiza inoculation, especially the 1000 spores treatment (AM1), and a moderate level of NO3 (NO3-75) can be used and these application levels can be very effective for greenhouse cucumber production.

Keywords


Article Title [Persian]

کاهش مصرف کود نیتروژن در خیار با استفاده از مایه زنی گیاه با میکوریزا

Authors [Persian]

  • مریم حقیقی
  • بهزاد عبدالهی پور
گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان ، ج. ا. ایران
Abstract [Persian]

این مطالعه به‌منظور بررسی تأثیر کاربردهای مختلف نیتروژن بر رشد، میزان فنل، آنتی‌اکسیدان و فعالیت آنزیم نیترات رداکتاز همراه با مایه‌زنی میکوریزا در رقم Super‌N3 خیار به‌صورت فاکتوریل در قالب یک طرح کاملاً تصادفی با 6 تکرار با 3 سطح نیتروژنNO3-50 ، NO3-75  وNO3-100 و 3 سطح مایه‌زنی میکوریزا شامل مایه‌‌زنی 1000 اسپور (AM1)، مایه‌‌زنی 2000 اسپور (AM2) و بدون مایه‌زنی میکوریزا (AM0) موردبررسی قرار گرفت. نتایج حاصل از ترکیبات نیتروژن با مایه‌زنی میکوریزا نشان داد که وزن‌تر ریشه با مایه‌زنی میکوریزا در تمام سطوح نیتروژن افزایش یافت، درحالی‌که وزن‌تر ساقه با سطوح نیتروژن و مایه‌زنی میکوریزا تحت تأثیر قرار نگرفت. FV / FM در گیاهان با سطحNO3-75  و مایه‌زنی میکوریزا در مقایسه با تیمار بدون مایه‌زنی میکوریزا بالاتر بود. همزیستی میکوریزا فعالیت آنتی‌اکسیدانی گیاه را در تیمار بدون نیتروژن افزایش داد، به‌طوری‌که AM1 و AM2  فعالیت آنتی‌اکسیدانی را به ترتیب در NO3-50 و NO3-75  نسبت به گیاهان بدون مایه‌زنی میکوریزا افزایش دادند. بالاترین فعالیت آنزیم نیترات رداکتاز در NO3- 50 و مایه‌زنی میکوریزا مشاهده شد و فعالیت آنزیم نیترات رداکتاز گیاهان در تمام سطوح نیتروژن کاهش یافت. در کل، می توان نتیجه گرفت که با مایه زنی میکوریزا، به ویژه تیمار 1000 اسپور (AM1)،  و سطح متوسط NO3 (NO3-75) می تواند مورد استفاده قرار گیرد و این میزان مصرف می تواند برای تولید خیار گلخانه ای بسیار موثر باشد.

Keywords [Persian]

  • فعالیت آنتی اکسیدانی
  • خیار
  • مایه‌زنی
  • میکوریزا
  • نیتروژن
  • فعالیت آنزیم نیترات رداکتاز
Al-Askar, A. A., & Rashad, Y. M. (2010). Arbuscular mycorrhizal fungi: a biocontrol agent against common Bean fusarium root rot disease. Plant Pathology, 9 (1), 31–38.
Azcon, R., & Marıa Tobar, R. (1998). Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa effect of drought stress. Plant Science,133, 1–8.
Aktar Maya, M., & Matsubara, Y. (2013). Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza, 23, 381–390.
Azcon, R., Gomez, M., & Tobar, R. (1992). Effects of nitrogen source on growth, nutrition photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorous fertilized plants of (Lactuca sativa L.). New Phytologist, 121, 227–234.
Barraclough, P. B., Kuhlmann, H., & Weir, A. H. (1989).The effects of prolonged drought and nitrogenfertilizer on root and shoot growth and water uptake by winter-wheat. Journal of Agronomy and Crop Science, 163(5),352–360.
Busquets, M., Calvet, C., Camprubi, A., & Estaun, V. (2010). Differential effects of two species of arbuscular mycorrhiza on the growth and water relations of (Spartium junceum) and (Anthyllis cytisoides). Symbiosis,52, 95–101.
Campanelli, A., Ruta, C., Mastro, G. D., & Morone-Fortunato, I. (2013). The role of arbuscular mycorrhizal fungi in alleviating salt stress in (Medicago sativa L.) var. icon. Symbiosis, 59 (2), 65-76.
Caravaca, F., Alguacil, M. M., Hernandez, J. A., & Roldan, A. (2005). Involvement of antioxidant enzyme and nitrate reductase activities during water stress and recovery of mycorrhizal (Myrtus communis) and (Phillyrea angustifolia) Plants. Plant Science, 169, 191–197.
Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., & Giovannetti, M. (2010). Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335, 311–323.
Chen, B. M., Wang, Z. H., Li, S. X., Wang, G. X., Song, H. X., & Wang, X. N. (2004). Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 16, 635–643.
Chen, Sh., Jina, W., Liu, A., Zhang, Sh., Liu, D., Wang, F., Lin, X., & He, C. (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae, 160, 222–229.
Dai, J., Liua, Sh., Zhanga, W., Xua, R., Luoa, W., Zhang, S. H., Yin, Z., Han, L., & Chen, W. (2011). Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouses. Scientia Horticulturae, 130, 551–561.
Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Brown, D. E., Colstounm E., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2),229–239.
Eftekhari, M., Alizadeh, M., & Ebrahimi, P. (2012). Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Industrial Crops and Products, 38, 160–165.
Farshadfar, E., Poursiahbidi, M. M., & Safavi, S. (2013). Assessment of drought tolerance in land races of bread wheat based on resistance/ tolerance indices. International Journal of Advanced Biological and Biomedical Research,12, 143-158.
Giorgi, A., Mingozzi, M., Madeo, M., Speranza, G., & Cocucci, M. (2009). Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chemistry, 114, 204–211.
Gollany, H. T., Molina, J .E., Clapp, C. E., Allmaras, R. R., Layese, M.F., Baker, J.M., & Cheng, H.H. (2004). Nitrogen leaching and denitrification in continuous corn as related to residue management and nitrogen fertilization. The Journal of Environmental Management, 33, S289-S298.
Goss, M. J., & de Varennes, A. (2002). Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biology & Biochemistry, 34, 1167-1173.
Hays, R., Reid, C. P. P., St, John, T. V., & Coleman, D. C. (1982). Effects of Nitrogen and Phosphorus on Blue Grama Growth and Mycorrhizal Infection. Oecologia, 54, 260-265.
He, Z., He, C., Zhang, Z., Zou, Z., & Wang, H. (2007). Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59, 128-133.
Huang, Z., Zou, Z., He, C., He, Z., Zhang, Z., & Li, J. (2011). Physiological and photosynthetic responses of melon (Cucumis melo L.) seedlings to three Glomus species under water deficit. Plant and Soil, 339, 391–399.
Jin, J., Wang, G. H., Liu, X., Pan, X., & Herbert, S.J. (2005). Phosphorus application affects the soybean root response to water deficit at the initial flowering and full pod stages. Soil Science and Plant Nutrition, 51(7), 953–960.
Johansen, A., Jakobsen, I., Jensen, E., & Hyphal, N. (1994). transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant and Soil, 160, 1-9.
Jones, J. B. (1930). Hydroponics: a practical guide for the soilless grower. CRC Press, USA.
Kapoor, R. (2008). Induced resistance in mycorrhizal tomato is correlated to concentration of jasmonic acid. The Journal of Bioscience, 8 (3), 49–56.
Kobae, Y., Tamura, Y., Takai, S., Banba, M., & Hata, S. (2010). Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiology. 51, 1411–1415.
Koleva, I. I., Van Beek, T. A., Linssen, J. P. H., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 13, 8-17.
Lawlor, D.W. (2008). Carbon & nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany, 53, 773–787.
Li, H. Y., Smith, S. E., Holloway, R. E., Zhu, Y. G., Smith, F.A.( 2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 172, 536–543.
Liu, D., Liu, W., Zhu, D., Geng, M., Zhou, W., & Yang, T. (2010). Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. Journal of Soil Science and Plant Nutrition,173 (2), 268-274.
Liu, Z. L., Li, Y. L., Hou, H.Y., Zhu, Z. C., Rai, V., He, X. Y., & Tian, C. J. (2013). Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: Aspects of N and C metabolism on the plant side. Plant Physiology and Biochemistry, 71, 87-95.
López-Bucio, J., Cruz-Ramírez, A., & Herrera-Estella L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6(3),280–287.
Lopez-Pedrosa, A., González-Guerrero, M., Valderas, A., Azcón -Aguilar, C., & Ferrol, N. (2006). GintAmt1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. fungal genetics and biology, 43, 102–110.
Makhziah, K., Rochiman, R., & Purnobasuki, H. (2013). Effect of nitrogen supply and genotypic variation for nitrogen use efficiency in maize. American Journal of Experimental Agriculture, 3(1), 182-199.
Masoumeh, F., Wichmann, S., Vierheilig, H., & Kaul, H. P. (2009). The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften, 13 (1), 15-22.
Mathur, N., & Vyas, A. (1996). Relative efficiency of different VAM fungi on growth and nutrient uptake in Ziziphyus mauritiana. Indian Forester,19, 129–131.
Mensah, J. A., Koch, A. M., Antunes, P. M., Hart, M. M., Kiers, E.T., & Bücking, H. (2015). High functional diversity within arbuscular mycorrhizal fungal species is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza, 25, 533–546.
McDonald, S., Prenzler, P.D., Antolovich, M., & Robard, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73-84.
Mortimer, P. E., Perez-Fernandez, M. A., & Valentine, A .J. (2009). Arbuscular mycorrhizae affect the N and C economy of nodulated (Phaseolus vulgaris L.) during NHþ nutrition. Soil Biology & Biochemistry, 41, 2115–2121.
Ordookhani, K., & Zare, M. (2011). Effect of Pseudomonas, Azotobacter and Arbuscular Mycorrhiza Fungi on Lycopene, Antioxidant Activity and Total Soluble Solid in Tomato (Lycopersicon Esculentum F1 Hybrid, Delba). Advances in Environmental Biology, 5(6), 1290-1294.
Pérez-Tienda, J., Valderas, A., Camañes, G., García-Agustín, P., & Ferrol, N. (2012). Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza, 22, 485–491.
Planchette, C., Fortin, J. A., & Furlan, V. (1983). Growth response of several plant species to mycorrhiza in soil of moderate fertility. I. Mycorrhizal dependency under field condition. Plant and Soil, 70, 199–209.
Sagi, M., Savidov, N. A., Lvov, N. P., & Lips, S. H. (1997). Nitrate physiological reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source. Plant Physiology, 99, 546-53.
Smith, S. E., & Read, D. J. (1997). Mycorrhizal Symbiosis, second ed. Academic Press Inc London, UK.
Tufenkci, S., Sonmez, F., & Sensoy, R. (2005). Effect of arbuscular mycorrhiza fungi inoculation and phosphours and nitrogen fertilization on some plant growth parameter and nutrient content of chickpea. Journal of Biological Sciences, 5(6), 738-743.
Vazquez, M. M., Barea, J. M., & Azcon, R. (2002). Influence of arbuscular mycorrhizae and a genetically modified strain of Sinorhizobium on growth, nitrate reductase activity and protein content in shoots and roots of Medicago sativa as affected by nitrogen concentrations. Soil Biology & Biochemistry, 34, 899–905.
Wu, Q., Zou, Y., Xia, R., & Wang, M. (2007). Five Glomus species affect water relations of Citrus tangerine during drought stress. Botany Study, 48, 147–154.
Zand-Parsa, S., Sepaskhah, A.R., & Ronaghi, A. (2006). Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management, 81, 227–256.
Zapata, F.,  & Zaharah, A. R. (2002). Phosphate availability from phosphate rock and sewage sludge as influenced by addition of water soluble phosphate fertilizers. Nutrient Cycling in Agroecosystems, 63,43–48.
Zhao, D., Kane, M., Borders, B.,  & Harrison, M. (2008).  Pine growth response to different site- preparation methods with or without post-plant herbaceous weed control on North Florida’s Lower Coastal Plain. Forest Ecology and Management, 255(7), 2512–2523.
Zhu, X. C., Song, F. B., Liu, S. Q., & Liu, T. D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil, 346, 189–199.