Identification of predominant epiphytic and endophytic bacterial isolates in rice seeds effective for enhancement of seed germination and plant growth

Document Type: Full Article

Authors

1 Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, I. R. Iran

2 Department of Agronomy and Plant Breeding, Rice Research Institute of Iran (RRII), Agricultural Research Education and Extension Organization (AREEO), Rasht, I. R. Iran

3 Department of Plant Pathology, Rice Research Institute of Iran (RRII), Agricultural Research Education and Extension Organization (AREEO), Rasht, I. R. Iran

Abstract

ABSTRACT-During rice growing season, the symptomless rice seeds from different paddy fields in Guilan province, Iran, were collected. After isolation of epiphytic and endophytic bacteria, 39 isolates including 19 epiphytes and 20 endophytes were selected based on the predominant characteristics. Five Operational Taxonomic Units (OTUs) were obtained based on PCR-RFLP of 16S r-DNA in these isolates. According to biochemical tests and partial sequencing of 16S-rDNA, in both epiphyte and endophyte bacteria of rice seeds, the most populated OTUs (V and II) were identified as Pantoea ananatis and Pseudomonas oryzihabitans, respectively. Six representative isolates from these two OTUs were selected to be evaluated for their abilities for rice seed germination and growth enhancement. Among them, P. oryzihabitans was not beneficially effective. However, JpB1 isolate of P. ananatis was considered to be the most effective plant growth promoting isolate, since it showed stable beneficial effects on most surveyed characteristics in both rice seed germination and growth enhancement experiments.  Although, OpB3 isolate of P. ananatis produced IAA in higher amount and solubilized phosphate more than the other isolates followed by JpB1 and P. ananatis L3pB3, it was not beneficially effective on rice seed germination.

Keywords


Article Title [Persian]

شناسایی باکتریهای شایع رورست و درون رست بذر برنج موثر در تقویت رشد و جوانه زنی گیاه برنج

Authors [Persian]

  • ریحانه غلامعلی زاده 1
  • غلام خداکرمیان 1
  • علی ‏اکبر عبادی 2
  • مریم خشکدامن 3
1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بو علی سینا، همدان، ج. ا. ایران
2 گروه تحقیقات اصلاح و تهیه بذر، موسسه تحقیقات برنج ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ج. ا. ایران
3 گروه گیاهپزشکی، موسسه تحقیقات برنج ایران، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ج. ا. ایران
Abstract [Persian]

چکیده- در طول فصل زراعی، بذور برنج فاقد علائم آلودگی از شالیزارهای مختلف استان گیلان، ایران، جمع آوری شدند. از میان 39 جـدایه‌ی باکـتریایی شامل 19 اپی‌فیت و 20 اندوفیت، پنج گـروه تاکـسونومی بر اساس هـضم آنـزیمی مـحصول PCR ناحیه‌ی 16S r-DNA به دست آمدند. بر اساس آزمون‌های بیوشیمیایی و توالی‌یابی ناحیه‌ی16S r-DNAدر مجموع اندوفیت و اپی‌فیت بذور برنج، پرجمعیت‌ترین گروه‌های تاکسونومی، گروه‌های V و II ، به ترتیب به عنوان Pantoea ananatis و Pseudomonas oryzihabitans  شناسایی گردیدند. شش جدایه‌ی نماینده از این دو گروه جهت ارزیابی توانایی‌شان در تقویت رشد و جــوانه‌زنی بذر برنج انتخاب شدند. در بین آنها، P. oryzihabitans فــاقد اثر افزایــشی موثر بود ولی جدایه JpB1 باکتری P. ananatis   به عنوان موثرترین جدایه‌ی تقویت کننده‌ی رشد در نظر گرفته شد، زیرا این جدایه اثرات رشدی با ثباتی روی اکثر صفات مورد بررسی در هر دو آزمون جوانه‌زنی بذر و رشد برنج داشت. اگرچه جدایه OpB3 باکتری P. Ananatis میزان بیشتری اکسین تولید نمود و فسفات بیشتری نسبت به سایر جدایه‌ها حل نمود، اما در تقویت جوانه زنی بذر برنج اثرات رشدی موثری نداشت.

Keywords [Persian]

  • باکتری‌های مفید
  • کودهای زیستی
  • تقویت رشد
  • تولید هورمون گیاهی
  • باکتری‌های همراه بذر برنج
Andrews, J. H., & Hirano, S. S. (1991). Microbial ecology of leaves. New York: Springer-verlag.

Ashrafuzzaman, M., Hossen, F. A., Razi Ismail, M., Anamul Hoque, M. D., Zahurul Islam, M. & Shahidullah, S.M. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7), 1247-1252.

Baset Mia, M. A., Shamsuddin, Z. H., & Mahmood, M. (2012). Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. African Journal of Biotechnology, 11, 3758-3765.

Biswas, J. C., Ladha, J. K., & Dazzo, F. B. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal, 164, 1644-1650.

Brenner, D. J., Krieg, N. R., Staley, J. T., & Garrity, G. M. (2005). Bergey's manual of systematic bacteriology (2nd ed.). New York (NY): Springer-Verlag.

Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advance in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In: R. N. S. Subba & Y. R. Dommergues (Eds.), Microbial Interaction in Agriculture Forestry (pp. 229-250). Enfield (USA): Science Publishers, Inc.

Cottyn, B., Regalado, E., Lanoot, B., De Cleene, M., Mew, T. W., & Swings, J. (2001). Bacterial populations associated with rice seed in the tropical environment. Phytopathology,91, 282–292.

Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Researcher, 1(4), 19-21.

Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22,147–149.

Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109-117. 

Glick, B. R., Patten, C. L., Holguin, G., & Penrose, D. M. (1999). Biochemical and genetic mechanisms used by plant growth-promoting bacteria. London (UK): Imperial College Press.

Glickmann, E., & Dessaux, Y. (1994). A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793-796.

Gupta, P. C. (1993). Seed vigor testing. In k. P. Agarwal (Ed.), Handbook of seed testing (pp. 245-246). New Delhi: National Seed Corporation.

Hermosa, R., Botella, L., Alonso-Ramrez, A., Arbona, V., Gomez-Cadenas, A., Monte, E., & Nicols, C. (2011). Biotechnological applications of the gene transfer from the beneficial fungus Trichoderma harzianum spp. to plants. Plant Signaling and Behaviour, 6(8), 1235-1236.

Hirano, s. s., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews, 64: 624-653.

International Rice Research Institute,[IRRI]  Rice Knowledge Bank. (2011). Measuring seed germination. [accessed2016March1].http://www.knowledgebank.irri.org/index.php? option=com_zoo&view=item&layout=item&Itemid=468

Kim, W. I., Cho, W. K., Kim, S. N., Chu, H., Ryu, K. Y., Yun, J. C., & Park, C. S. (2011). Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. Journal of Microbiology and Biotechnology, 21, 777-790.

Lindow, S. E., Arny, D. C., & Upper, C. D. (1978). Distribution of ice-nucleation-active bacteria on plants in nature. Applied and Environmental Microbiology, 36, 831-838.

Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phylosphere. Applied and Environmental Microbiology, 69, 1875-1883.

Lipton, D. S., Blanchar, R. W., & Blevins, D. G. (1987). Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiology, 85, 315-317.

Loaces, I., Ferrando, L., & Scavino, A. F. (2011). Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecology, 61, 606-618.

Long, H. H., Schmidt, D. D., & Baldwin, I. T. (2008). Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses. PLoS One, 3(7), e2702.

Mano, H., Tanaka, F., Watanabe, A., Kaga, H., Okunishi, S., & Morisaki, H. (2006). Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants, (Oryza sativa) cultured in a paddy field. Microbes and Environments, 21, 86-100.

Meier, U. (1997). Growth Stages of Mono-and Dicotyledonous Plants: BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag.

Megias, E., Megias, M., Ollero, F. J., & Hngria, M. (2016). Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announcements, 4(1), 1-2.

Nautiyal, S. C. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letter, 170, 265-270.

Okunishi, S., Sako, K., Mano, H., Imamura, A., & Morisaki, H. (2005). Bacterial flora of the endophytes in the maturing seeds of cultivated rice (Oryza sativa). Microbes and Environments, 20,168–177.

Peck, S. C., & Kende, H. (1995). Sequential induction of the ethylene biosynthetic enzymes by indole3-acetic acid in etiolated peas. Plant Molecular Biology, 28, 293–301.

Rohlf, F. J. (2009). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.2. Exeter Software. New York: Department of Ecology and Evolution State University of New York.

Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letter, 278, 1-9.

Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for identification of plant pathogenic bacteria. Minnesota: APS press.

Sharma, A., Shankhdhar, D., Sharma, A., & Shankhdhar, S. C. (2014). Growth promotion of rice genotypes by PGPRs isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition, 14(2), 505-5017.

Sheibani-Tezerji, R., Naveed, M., Jehl, M-A., Sessitch, A., Rattei, T. H., Mitter, B. (2015). The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements. Frontiers in Microbiology, 6(440), 1-16.

Sturz, A. V., Christie, B. R., Matheson, B. G., & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils, 25, 13-19.

Surette, M. A., Sturz, A. V., Lada, R. R., & Nowak, J. (2003). Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant and Soil, 253, 381-390.

Tripathi, A. K., Verma, S. C., & Ron, E. Z. (2000). Molecular characterization of a salt tolerant bacterial community in the rice rhizosphere. Research in Microbiology, 153, 579-584.

Vacher, C., Hampe, A., Porte, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The phyllosphere: Microbial jungle at the plant-climate interface. Annual Review of Ecology Evolution and Systematics, 47, 1-24.

Watanabe, K., Kawakita, H., & Sato, M. (1996). Epiphytic bacterium, Erwinia ananas, commonly isolated from rice plants and brown planthoppers (Nilaparvata lugens) in hopperburn patches. Applied Entomology and Zoology, 31, 459-462.