SOIL GENESIS AS AFFECTED BY
TOPOGRAPHY AND DEPTH OF
SALINE AND SODIC GROUND WATER
UNDER SEMIARID CONDITIONS OF
IRAN

ALI ABTAHI

Department of Soil Science, College of Agriculture,
Shiraz University, Shiraz, Iran.
(Received July 8, 1988)

ABSTRACT

Soils of the Maharlu, Kamal-Abed, Saif-Abed and
Charghi soil series, all calcareous developed in the
Sarvestan intermontane basin under similar climatic and
parent material conditions but with different topography and
depth to saline and sodic ground water, were investigated.
Marked differences in the morphological, physical, chemical
and mineralogical properties of the four soils were
associated with variation in topography and the depth of
saline and sodic ground water. Soils with salic horizons
(Aquollc Salorthids) have been formed on the lowlands with
shallow ground water, soils with gypsic horizons (Salic
Gypsiorthids) on alluvial plains with moderately deep ground
water, soils with natic horizons (Typic Natricerals) on the
lower piedmont plains with deep ground water, and soils with
argillic horizons (Calcic Haploxerals) on the upper piedmont
plains with very deep ground water. Exchangeable Na, the
major cause of clay dispersion and migration, is only
effective whenever the excess salts have been leached out.
Salination and alkalization, desalination, solonization and
dealkalization are four successive processes in the formation
of these soils.

X-ray and electron optical analyses indicated that
palygorskite increases with decrease of smectite towards the
upper part of the intermontane basin.

3Associate Professor.
The Sarvestan basin, which is a typical intermontane basin, lies in southern Iran, about 50 km east of Shiraz (Fig. 1). This basin is 80 to 90 km long in a northwest to southeast direction, and 10 to 15 km wide in a north to south direction. The altitude of the basin varies from 1,400 m above mean sea level near the lake surface to 1,800 m above mean sea level at the foot of the mountains. The climate is Mediterranean with an average annual precipitation of 332 mm. The highest and lowest mean monthly temperatures (1950-1974) are 28.4°C for July and January, respectively. Most of the soils, therefore, have a xeric moisture regime and the soil temperature can be classified as thermic (7).
The Sarvestan basin (Fig. 2) is formed by tectonic movements of the Zagros mountain ranges during Mio-Pliocene time (21). During the Quaternary period, thick lacustrine materials were deposited in the central part of the basin. The area surrounding the lake is composed of alluvialcolluvial deposits. Towards the lake these become thinner and are replaced by lacustrine deposits. As a result of these depositional patterns, several physiographic units may be defined on the basis of salinity status: lowlands and alluvial plains with severe to very severe salinity influenced by lacustrine conditions (No. 3 on Fig. 2), piedmont plains having a uniform fine texture with slight salinity, influenced by semilacustrine conditions (No. 2 on Fig. 2); alluvial fans, alluvialcolluvial fans, upper terraces and fan erosional remnants with no salinity problem at the outer margin (No. 1 on Fig. 2).

The native vegetation of the area consists of many species and their distribution follows a zonation controlled by topography and depth of ground water. The most important plant associations are: a) on shallow non-saline soils and fans, the association of *Artemisia* sp.,
Fig. 2. Soil salinity and landform relationships in Sarvestan basin. (Abtahi, 1978).

(1) Land with no salinity problem (alluvial-colluvial fans, alluvial fans, upper terraces, and fan erosional remnants).

(2) Land with slight to moderate salinity problem (piedmont plains).

(3) Land with severe to very severe salinity problem (alluvial plain and lowland).

(4) Salt lake.
Zygophyllum stripticosides, Peganum harmala and some Gramineae; and b) in very saline alluvial plains, the association of Salsola sp., Salicornia herbacea, Suada sp. and Tamarix sp. In extremely saline lowlands where water tables are near or almost at the surface, even highly tolerant halophytes cannot grow.

The parent materials of soils are variably textured and highly calcareous, being derived from surrounding limestone mountains.

Two evolutionary sequences of soil formation are proposed for this synclinal basin: one with respect to topography and time (topochronosequence) with none to moderate salinity problems under well-drained conditions on the flanks of the basin, and another with severe to very severe salinity problems under the influence of saline ground water at various depths in the central part of the basin. In this paper, attention was directed mainly to soil formation as affected by topography and depth of saline and sodic ground water of the central part of the basin. The evolution of salt-affected soils have been studied by several workers (1, 5, 13, 14, 23, 25, 26). Soil formation under the well-drained conditions of the surrounding of the basin has been discussed in another paper (3).

MATERIALS AND METHODS

The soils were described and classified according to the USDA, Soil Survey Manual (35) and Soil Taxonomy (36), respectively (Table 1).

Samples of water for quality determination were collected during the end of spring either directly from each study site or from surrounding wells.

Particle-size analysis of soil samples was determined by the hydrometer method after gypsum and other soluble salts were removed from samples.
<table>
<thead>
<tr>
<th>Table Title</th>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Row 1</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>Data Row 2</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
</tr>
<tr>
<td>Data Row 3</td>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
</tr>
</tbody>
</table>

Note: The table contains a list of data rows with values in various columns.
by repeated washing with distilled water (10). The soil pH, EC and soluble ions were measured on saturated paste extracts (37). Gypsum and alkaline earth carbonates were also determined (37). Organic carbon in the soil was measured by wet oxidation method of Walkley and Black (18). Cation exchange capacity (CEC) was determined by 1M NaOAc (pH=6.2) for soil samples and 1M NH4OAc (pH=7) for clay fraction (12).

Water-dispersible clay was determined on untreated samples of soil and clay. To find the degree of dispersion of clay under natural conditions, the soils were dispersed in distilled water without addition of any dispersing agent. After required period of time, the amount of clay was determined and assumed to be equal to dispersed clay under natural conditions.

Removal of chemical cementing agents and separation of different size fractions for mineralogical analyzes were done according to the methods of Kittick and Hope (24) and Jackson (20), respectively. Free iron oxides were removed from clay sample by the citrate-dithionite method (30). The treated clay was dried on glass slides and examined by X-ray diffraction, by using Ni-filtered CuKa radiation, a range factor of 400 cps and a time constant of 1s. X-ray diffractograms were obtained from Mg-saturated soil clays both before and after glycerol solvation. Potassium saturated samples were X-rayed after drying at room temperature and after heating at 550°C for 2 hr.

Electron micrographs of citrate-dithionite treated clays were obtained with a Phillips 3H 300 electron microscope following the technique of Bates (8).

The electron micrographs and 10.7 Å peak of the X-ray diffractograms were used for the semi-quantitative determination of palygorskite (1). Four randomly selected 35,000X photographs (6 by 8 cm) were used with a transparent 5-mm grid to
estimate the palygorskite content of each sample by point counting. Since no feldspars were observed in the clay fraction, the percentage of illite were estimated from the total K2O content of the clay (20).

Vermiculite in the clay fraction was determined quantitatively by the method of Alexiades and Jackson (8). Quantification of other minerals such as smectite, chlorite and quartz was estimated from their relative peak intensities using the glycerol treated samples (22).

RESULTS AND DISCUSSION

The two main factors influenced by topography, namely the depth of ground water and the degree of salinity of ground water, are responsible for genesis of soils of the studied area. Maharlu, Kamal-Abad, and Chardagh soils formed an evolutionary sequence of soils developed under the influence of a saline ground water with high SAR values (Tables 1 and 2). The different members of the topossequence may be grouped according to specific processes of soil development. Four processes in the formation of these soils could be recognized.

Maharlu Soil Series

Salination and alkalinization in this series have resulted in soils that can be classified as Salorthid according to Soil Survey Staff (36). Ground water is extremely saline (75 dSm⁻¹) and has a very high SAR value of 124 (Table 3). During the rainy winter due to rising of ground water, the soils are flooded with saline and sodic ground water, while during summer intensive evaporation takes place (2). The result is a high concentration of Na and other salts throughout the profile (Tables 1 and 2). The main soil forming processes are, therefore, salination and alkalinization. In spite of the high ESP values for the Maharlu pedon,
<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>EC (dS/m)</th>
<th>pH</th>
<th>PM (%)</th>
<th>Dispersible clay (%)</th>
<th>Organic matter (%)</th>
<th>GAE</th>
<th>Calcium</th>
<th>Gypsum</th>
<th>Particle-size distribution</th>
<th>Texture</th>
<th>Soil Clay</th>
<th>ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0-10</td>
<td>1.2</td>
<td>7.7</td>
<td>3.0</td>
<td>8.6</td>
<td>1.5</td>
<td>35</td>
<td>5</td>
<td>76</td>
<td>40</td>
<td>24</td>
<td>c1</td>
<td>18.5 62.6 64</td>
</tr>
<tr>
<td>S2</td>
<td>10-50</td>
<td>0.7</td>
<td>7.6</td>
<td>5.0</td>
<td>7.8</td>
<td>1.3</td>
<td>35</td>
<td>10</td>
<td>86</td>
<td>48</td>
<td>24</td>
<td>c2</td>
<td>28.0 68.4 68</td>
</tr>
<tr>
<td>S3</td>
<td>50-70</td>
<td>0.4</td>
<td>7.7</td>
<td>2.8</td>
<td>5.8</td>
<td>1.0</td>
<td>29</td>
<td>8</td>
<td>22</td>
<td>20</td>
<td>48</td>
<td>c</td>
<td>19.5 57.4 57</td>
</tr>
<tr>
<td>S4</td>
<td>70-100</td>
<td>0.3</td>
<td>7.0</td>
<td>4.4</td>
<td>12.0</td>
<td>1.2</td>
<td>43</td>
<td>1</td>
<td>26</td>
<td>40</td>
<td>34</td>
<td>c1</td>
<td>15.0 58.4 48</td>
</tr>
<tr>
<td>S5</td>
<td>100-150</td>
<td>0.2</td>
<td>7.6</td>
<td>3.0</td>
<td>10.7</td>
<td>1.0</td>
<td>32</td>
<td>0.3</td>
<td>18</td>
<td>56</td>
<td>23</td>
<td>s1</td>
<td>25.0 64.5 5</td>
</tr>
<tr>
<td>S6</td>
<td>150-200</td>
<td>0.4</td>
<td>7.4</td>
<td>2.6</td>
<td>28.2</td>
<td>0.3</td>
<td>23</td>
<td>25.0</td>
<td>48</td>
<td>28</td>
<td>24</td>
<td>s1</td>
<td>13.4 44.6 40</td>
</tr>
<tr>
<td>S7</td>
<td>200-250</td>
<td>0.5</td>
<td>7.4</td>
<td>2.4</td>
<td>21.0</td>
<td>0.2</td>
<td>30</td>
<td>10.3</td>
<td>26</td>
<td>40</td>
<td>34</td>
<td>c1</td>
<td>28.6 31.8 41</td>
</tr>
<tr>
<td>S8</td>
<td>250-300</td>
<td>0.3</td>
<td>7.0</td>
<td>5.0</td>
<td>19.1</td>
<td>0.3</td>
<td>41</td>
<td>5.5</td>
<td>20</td>
<td>54</td>
<td>26</td>
<td>s1</td>
<td>19.0 38.4 47</td>
</tr>
<tr>
<td>S9</td>
<td>300-350</td>
<td>0.3</td>
<td>7.0</td>
<td>5.5</td>
<td>20.2</td>
<td>0.6</td>
<td>43</td>
<td>4.0</td>
<td>26</td>
<td>40</td>
<td>30</td>
<td>c1</td>
<td>36.0 50.0 48</td>
</tr>
<tr>
<td>S10</td>
<td>350-400</td>
<td>0.2</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>43</td>
<td>4.0</td>
<td>26</td>
<td>40</td>
<td>30</td>
<td>c1</td>
<td>36.0 50.0 48</td>
</tr>
<tr>
<td>S11</td>
<td>400-450</td>
<td>0.1</td>
<td>7.0</td>
<td>5.0</td>
<td>17.0</td>
<td>0.7</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td>S12</td>
<td>450-500</td>
<td>0.1</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td>S13</td>
<td>500-550</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td>S14</td>
<td>550-600</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td>S15</td>
<td>600-650</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td>S16</td>
<td>650-700</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
<td>18.2</td>
<td>0.6</td>
<td>36</td>
<td>0.1</td>
<td>18</td>
<td>63</td>
<td>43</td>
<td>s1</td>
<td>16.4 47.8 49</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Chemical composition of ground water from representative physiographic areas.
the pH and the amount of water-dispersible clay are low throughout the profile, mainly due to the presence of excess soluble salts (Table 2). Although the Na content of the soil profile is high, due to the presence of high amount of salt, the Maharlu series does not show any field evidence of clay migration. Gypsum in the profile of Maharlu series (Table 2) might be pedogenic and accumulated by capillary water.

Kamal-Abad Soil Series

In the alluvial plains, approximately 2 m higher than the lowlands, the depth of water table is 2 to 3 m for the most of the year and the first effect on soil formation is a substantial leaching of the salts from the upper part of the profile (Tables 1 and 2).

The desalination is associated with a partial dealkalization and formation of a gypsic horizon. However, at this stage enough salts are still present to prevent the action of Na on clay dispersion. At a further stage of desalination, clay dispersion becomes evident and a third stage is reached.

Sayf-Abad Soil Series

In the lower piedmont plains, auger sampling from the depth of soil profile showed that the water table is deeper than 3 m, therefore, desalination is more pronounced (Tables 1, 2 and 3) and hydrolysis of the Na clay complex causes the pH to be 9.5 or higher. The dispersion of the clay leads to clay migration which is a basic requirement of the formation of matriic and argillie horizons. The amount of water-dispersible clay is greater than 85% of the total clay.

The data of Table 2 suggest that exchangeable Na, which is a major cause of clay dispersion and migration (1, 4), becomes more effective at dispersion when the excess salt in the soil
solution has been leached. Clay migration apparently formed the continuous clay skins observable in the field (Table 1). The high concentration of water-dispersible clay (Table 2) shows that clay migration is still active. Dispersibility of clay is probably affected by the same factors as swelling of clay. Rowell et al. (34) have listed these factors as the type of clay, the concentration and composition of the electrolyte, and the presence of other materials in association with clay such as iron and aluminum.

Chartaghi Soil Series

In the higher parts of the piedmont plains where ground water is deeper and no longer influences the soil-forming process, the Chartaghi soils developed. In this series due to Ca from dissolution of carbonates, Ca is the major cation in exchange sites, therefore, pH and ESP values are lower than the values in Sayf-Abad soils. The soil CaCO₃ likely acts as a continuous reservoir for maintaining a low but steady concentration of soluble Ca ions necessary for replacing exchangeable Na of the natic horizon of the Sayf-Abad series to the argillic horizon of the Chartaghi series. The released Na likely leached away, if there was ever any, from the soil profile by precipitation during winters. The low water-dispersible clay content of the Chartaghi series might be due to this ameliorative process.

The dealkalization process corresponds to the steppification of the solonetz (steppified Solonetz) of Kovda et al. (25).

Evaluation of Clay Mineralogy

Analysis of clay fraction from each subsurface horizon of the four representative soils of the study sequence revealed that similar minerals were present, but they differed in their abundance (Fig. 3 and Table 4).
Maharlu series
C2 sa, 10-55 cm
Kamal-Abad series
C2 cs, 55-90 cm
Sayf-Abad series
B22 t, 36-70 cm
Chartaghi series
B22 t, 45-65 cm

Fig. 3 X-ray diffraction pattern of clay from subsurface horizons of Maharlu, Kamal-Abad, Sayf-Abad and Chartaghi series. (d-values are in Å).
	N	+	++	+++	+++	07-09	392																				
	N	+	++	++	+++	07-09	328																				
	N	+	++	++	++	07-09	328																				
	N	+	++	++	++	07-09	24																				

HEDARAFIN (HEDARAFIN) 14.11.2015

For Table Continued...
The patterns of Mg-treated, glycerol-solvated specimens (Fig. 3) show the presence of illite, smectite, Fe-chlorite, palygorskite, quartz and trace of vermiculite. In addition to a 10.7 Å peak in X-ray diffractograms, the electron microscopy of the Fe-free clay samples confirmed the presence of varying amounts of palygorskite type of clay minerals in all samples (Fig. 4). In Salorthids of the lowlands area (Maharlu) the palygorskite content is <25%. Where a marly horizon is present (Sayf-Abad) the palygorskite content is between 25-50%, and where an argillic horizon (Chartaghi), it increases to 50% or more (Fig. 4). This difference could be attributed to the change in depth to saline and sodic ground water and degree of salt accumulation resulting from variation in topography.

According to Henderson and Robertson (18), and Martin Vivaldi and Robertson (28), the limestone of southern Iran contains only minor amounts of palygorskite and smectite. It has also been stated that the same parent rocks include equal amounts of illite, chlorite and quartz (11). Therefore, it may be concluded that the presence of a large quantity of palygorskite or smectite in soils could be due to pedogenic processes. Soil solution is moderately rich in silica, Ca, and Mg, may favor the formation of palygorskite and smectite (32), which have similar chemical compositions but different structures. Alkaline and alkaline-earth elements such as those needed for this neof ormation may be from the weathering of limestone and dolomitic limestone. Si is fairly ubiquitous in primary and secondary minerals and will also be present as dissolved Si(OH)₄ in the ground water. According to Wiersma (38) part of the necessary SiO₂ originates from finely distributed silica present in the limestone. Smectite, which is present only in trace amount in parent rocks, probably forms in the soil from chlorite. Formation of smectite from illite and chlorite has been reported under conditions similar to those of the Sarvestan basin (11, 33). Since smectite is not stable in highly saline and
Fig. 4. Electron micrograph (35,000 X) of clay of the Chartaghi series (B22t, 45-65 cm) showing the presence of fibrous (palygorskite) and platy clay minerals.
alkaline conditions (15, 18), therefore, the high amount of smectite minerals in the lowland area (Table 4) is supposed to have been formed outside of the present-day lowland surface, under the influence of fresh water circulation. This mineral under sustained influence of very high salinity and alkalinity gradually decomposes and palygorskite neoforms from decomposition products. The palygorskite present in the area may be of two origins: neoformation from the reaction of Mg and silica present in ground water (27, 29, 31) or diagenetic formation from smectite (9, 17, 36, 38). A decrease in the cation exchange capacity of the clay fraction (Table 2) likely reflects the changes in the clay mineralogy within the sequence (Fig. 3 and Table 4). Therefore, it may be concluded that, as a result of variation in depth to saline and sodic ground water and degree of salt accumulation, resulting from variations in topography, palygorskite increases as smectite decreases. In the lowland area with high smectite and low palygorskite the CEC is high (86.4 meq 100−1 g clay) while in the lower piedmont plains with deep ground water and soils with argillic horizon that have low smectite and a high palygorskite contents, the CEC drops to rather low values (34.2 meq 100−1 g clay) as the CEC of palygorskite is low.

LITERATURE CITED

