Effect of amino acid and mycorrhiza inoculation on sweet pepper growth under greenhouse conditions

Document Type : Full Article

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, I. R. Iran

Abstract

ABSTRACT- The production of greenhouse sweet pepper is increasing because of the consumer demand for sweet pepper year around. In this study, physiological characteristics of sweet pepper were evaluated in a greenhouse under different levels of arbascular mycorrhizal fungus, Glomus intraradices, (AMF) and various levels of amino acid (AA). Treatments included no AMF as a control (AMF1), 1000 spores (AMF2) and 2000 spores (AMF3) of the AMF and four amino acid concentrations including control (C), 3 g (AA1), 4.5 g (AA2) and 6 g (AA3) of AA. Results indicated that mycorrhiza inoculation and mixture of amino acid increased shoot and root fresh weights. AMF application did not affect transpiration, chlorophyll content, and P and K concentration; nevertheless, photosynthesis improved with AMF. Fruit quality also improved under AMF2 and AMF3 treatments. Finally, it was concluded that with higher AA concentration and 1000 spores of mycorrhiza, more positive effects on sweet pepper growth could be observed.

Keywords


Article Title [فارسی]

اثر آمینواسید و تلقیح مایکوریز بر رشد فلفل دلمه در گلخانه

Authors [فارسی]

  • مریم حقیقی
  • محمدرضا برزگر
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ج. ا. ایران
Abstract [فارسی]

چکیده-تولید فلفل دلمه­ ای در سالهای اخیر به دلیل افزایش تقاضای مصرف کننده افزایش چشمگیری داشته است. خصوصیات فیزیولوژیکی فلفل دلمه­ ای در گلخانه­ های تحقیقاتی دانشگاه صنعتی اصفهان تحت تیمارهای قارچ arbascularmycorrhiza گونه lomusintraradices(AMF) و سطوح مختلف آمینواسید (AA) ارزیابی شدند. تیمارها شامل AMF1 (بدون مایه زنی میکوریزا) به عنوان شاهد، AMF2 با1000 اسپور و AMF3 با 2000 اسپور مایکوریز و 4 غلظت شاهد (C، بدون امینو اسید)، 3 گرم(AA1)، 5/4گرم (AA2) و 6 گرم(AA3) امینواسید بودند. نتایج نشان داد که تلقیح مایکوریز و مخلوط آمینواسید، وزن تر و خشک ریشه و شاخساره را افزایش می­دهد. کاربرد قارچ، تعرق، میزان کلروفیل و غلظت فسفر و پتاسیم را تحت تاثیر قرار نداد اما فتوسنتز با کاربرد AMF بهبودیافت. همچنین کیفیت میوه تحت تیمارهای AMF2 و AMF3 بهبود یافت. در نهایت با افزایش غلظت آمینواسید و 1000 اسپور قارچ تاثیرات مثبتی در رشد فلفل دلمه ای مشاهده شد.

Keywords [فارسی]

  • واژه های کلیدی:
  • امینواسید
  • فلفل
  • فتوسنتز
  • عملکرد
  • همزیستی
Al-Karaki, G.N., Hammad, R., & Rusan, M. (2001). Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43–47.
Aroca, R., Ruiz-Lozano, J. M., Zamarreno, A.M., Paz, J.A., Garcia-Mina, J.M., Pozo, M.J., & Lopez-Raez, J.A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants.  Plant Physiology, 170, 47– 55.
Baslam, M., Garmendia, I., & Goicoechea, N. (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. Journal of Agricultural and  Food Chemistry, 59, 5504–5515.
Bassiouny, I., Mazrouh, A.Y., & Hassan, N.A. (1993). The Effect of foliar fertilizers, sucrose and GA3 on growth and yield of lettuce plants (Lactuca sativa L.). Journal of Agricultural Research. Tanta University, 19(3), 645-653.
Bassiouny, I. (1993). The response of lettuce plants (Lactuca sativa L.) to foliar nutrition with urea and sucrose. Journal of Agricultural Research. Tanta University, 19(3), 636-643.
Cao, J. bX., Peng, Z.P., Huang, J.C., Yu, J.H., Li, W.N., Yang, L. X., & Lin, Z.J. (2010). Effect of foliar application of amino acid on yield and quality of flowering Chinese cabbage. Chinese Agricultural Science Bulletin, 26,162- 165.
Cerdán, M., Sánchez-Sánchez, A., Oliver, M., Juárez, M. and Sánchez-Andreu, J.J. (2009). Effect of foliar and root application of amino acids on iron uptake by plants. Acta Horticulturae, 830, 481-488.
Conversa, G., Lazzizera, C., Bonasia, A., & Elia, A.(2013).Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils, 49,691–703.
Dakora, F.D., & Phillips, D.A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil, 245, 35-47.
Franco, J.A., Bañón, S., & Madrid, R. (1994). Effects of a protein hydrolysate applied by fertigation on the effectiveness of calcium as a corrector of blossom-end rot in tomato cultivated under saline conditions. Scientia Horticulture, 57, 283-292.
Garcia, L.A., Franco, J.A., Nicolas, N., & Vicente, R.M. (2006). Influence of amino acids in the hydroponic medium on the growth of tomato plants. Plant Nutrition, 29, 2093-2104.
GerickeS, & Kurmies B. (1952). Die kolorimetrische Phosphorsäure-bestimmungmit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 59, 235-247.
Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.
Giri, B., Kapoor, R., & Mukerji, K.G. (2007). Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753–760.
Green H., Larsen J., Olsson P.A., Jensen D.F., & Jacobsen I. (1999). Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular ycorrhizal fungus Glomus in traradices in root-free soil. Applied and Environmental Microbiology, 65, 1428–1434.
Haghighi, M., Mozafariyan, M., & Abdolahipour, B. (2015). Effect of cucumber mycorrhiza inoculation under low and high root temperature grown on hydroponic conditions. Journal of Crop Science and Biotechnology,18, 89–96.
Hajiboland, R., Aliasgharzadeh, N., Laiegh, S., & Poschenrieder, C. (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331, 313–327
Hameeda, B., Srijana, M., Rupela, O.P., & Reddy, G. (2007). Effect of bacteria isolated from composts and macro fauna on sorghum growth and mycorrhizal colonization. World Journal of Microbiology and Biotechnology, 23(6), 883-887.
Heuer, B. (2003). Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Sciences. 165, 693-699.
Junxi, C., Zhiping, P, Jichuan, H., Junhong, Y., Wenying, L., Linxiang, Y., & Zhijun, L. (2010). Effect of foliar application of amino acid on yield and quality of flowering Chinese cabbage. Chinese Agricultural Science Bulletin, 26.162-165.
Klironomos, J.N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.
Liu, X., & Bush, D.R. (2006). Expression and transcriptional regulation of amino acid transporters in plants. Amino acids, 30, 113-120.
Liu, X.Q., Ko, K.Y., Kim, S.H., & Lee, K.S. (2008). Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Communications in Soil Science and Plant Analysis,39, 269- 281.
Maini, P., & Bertucci, B.M. (1999). Possibility to reduce the effects of the viruses with a biostimulant based on amino acids and peptides. Agro food Industry Hi Tech, 10, 26-28.
Neeraja, G. I. P., & Reddy, B.G. (2005). Effect of growth promoters on growth and yield of tomato cv. Marutham. Journal of Research Acharya N.G. Ranga Agricultural University (ANGRAU), 33(3), 68-70.
Nemec, S. (1992). Plant roots as mycorrhizal fungus inoculums for citrus grown in the fields in Florida. Advance Horticultural Science, 6, 93–96.
Novozamsky, I., Eck, R., VanSchouwenburg, J.C., Walinga. I. (1974) Total nitrogen determination in plant material by means of the indophenol-blue method. Netherlands Journal of Agricultural Science, 22, 3–5.
Perner, H., Schwarz, D., Bruns, C., Mäder, P. & George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17, 469-474.
Quilambo, O.A. (2003). The vesicular-arbuscular mycorrhizal symbiosis. African Journal of Biotechnology 2, 539-546.
Rooney, D.C., Killham, K., Bending, G. D., Baggs, E., Weih, M., & Hodge, A. (2009). My corrhizas and biomass crops: opportunities for future sustainable development. Trends in Plant Science. 14, 542–549.
Vosátka, M., & Albrechtová, J. (2008). Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture, In: Teixeira da Silva, J.A. (ed.). Floriculture, Ornamental and Plant Bbiotechnology- Advances and Topical Issues, Vol. V (pp. 466–479). Global Science Books, Takamatsu, Japan.
Zhu, X.C.,  Song, F.B., Liu, S.Q., & Liu, T.D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil, 346, 189-199.