Effect of crop rotation on the changes of potassium forms and clay minerals under Mediterranean climatic condition

Document Type : Full Article


Department of Soil Science, College of Agriculture, Urmia University, Urmia, I. R. Iran


ABSTRACT-The influence of intensive crop rotation on the distribution of potassium forms and clay mineralogy was assessed under a Mediterranean condition in the Piranshar region, northwest of Iran. For this purpose, surface soil samples in relation to six soil sub-groups from crop rotationfiled (sugar beet, wheat, pea, and barley) over five decades and the adjacent uncultivated lands were described and sampled. Soil analyses were concernedwiththe determination of physicochemical characteristics, clay mineralogy, the forms and adsorption properties of K. XRD-patterns revealed that soils were similar in clay mineral compositions, including illite, smectite, chlorite, and kaolinite for both cultivated and uncultivated soils, but some changes occurred in the peak intensity and position of the minerals mainly chlorite with cropping. Consistent with this, the sharp peak of chlorite (d001, 14.2 Ao) withthe intensity of 1700 to 1800 Cps in the uncultivated lands shifted toward peaks with intensity of about 1000 Cps in the adjacent cultivated soils along with the appearance of a disordered chlorite-vermiculite mineral.A pronounced decline in the solubleK from 0.001 to 0.53 mmol l-1 (a drop from 17 to 87%), exchangeable K from 6 to 115 mg kg-1 (a drop from 5 to 53%), and non-exchangeable K from 9 to 244 mg kg-1 (a drop from 1.5 to 29%) wereobserved for the majority of the studied soils as a result of crop rotation. Under cultivation, K adsorption effectively increased in the Chromic Calcixererts, TypicCalcixerolls, TypicCalcixererts, and TypicHaploxerepts where exchangeable and available K decreased.


Article Title [فارسی]

تاثیر علملیات متناوب زراعی بر تغییر شکلهای پتاسیم و کانیهای رسی تحت شرایط اقلیم مدیترانه ای

Authors [فارسی]

  • سالار رضاپور
  • فریبا فلاحی
گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه،ج. ا. ایران
Abstract [فارسی]

چکیده- این مطالعه با هدف تاثیر کشت های متناوب زراعی بر توزیع شکل های پتاسم و کانی شناسی رس در یک شرایط اقلیمی مدیترانه ای انجام گرفت. برای این منظور، نمونه های خاک سطحی 6 زیرگروه خاک از مزرعه تحت کشت متناوب چغندرقند، گندم، نخود و جو با سابقه بیش از 5 دهه عملیات زراعی و اراضی غیر زراعی همجوار تشریح و نمونه برداری شدند. آنالیز های خاک شامل تعیین خصوصیات فیزیکوشیمیایی، کانی شناسی رس، شکل های مختلف پتاسیم و خصوصیات جذبی پتاسیم بودند. پراش پرتو ایکس نشان داد که خاکها از لحاظ ترکیب کانی های رسی (شامل ایلایت، اسمکتایت، کلرایت و کائولینایت) در خاک های زراعی و غیر زراعی مشابه بودند اما در شکل وموقعیت پیک های این کانی ها مخصوصا" کانی کلرایت تحت تاثیر عملیات زراعی تغییراتی حاصل شده بود. در این راستا، پیک های مربوط به کلرایت (doo1 برابر 2/14 آنگستروم) با شدت 1700 تا 1800 cps در اراضی غیر زراعی به طرف پیک های با شدت 1000cps  همراه با ظهور کانی مخلوط نامنظم کلرایت–ورمیکولایت تغییر یافته بود. در اغلب خاکهای مطالعه شده، یک کاهش قابل توجه در پتاسیم محلول از 001/0 تا 53/0 مول در لیتر (کاهش 17 تا 87 درصد)، پتاسیم تبادلی از 6 تا 115 میلی گرم در کیلوگرم (کاهش 5 تا 53 درصد) و پتاسیم غیر تبادلی از 9 تا 244 میلی گرم در کیلوگرم (کاهش 5/1 تا 28 درصد) تحت تاثیر عملیات زراعی متناوب مشاهده شد. عملیات زراعی بطور موثری جذب پتاسیم را در خاکهای Chromic Calciererts، TypicCalcixerolls، TypicHaploxerepts و TypicCalcixererts افزایش داده بود در حالی که پتاسیم تبادلی و قابل استفاده این خاکها کاهش یافته بود.

Keywords [فارسی]

  • واژه های کلیدی:
  • تناوب زراعی
  • کانیهای رسی
  • زیرگروه خاک
  • پتاسیم تبادلی
  • پتاسیم غیر تبادلی
Ayers, R.S., & Westcot, D.W. (1994). Water quality for agriculture irrigation and drainage. FAO, Rome, Paper no.29.
Andrist Rengel, Y. (2008). Quantifying mineral sources of potassium in agricultural soils. Doctoral Diss., Dept. of Soil and Environment, SLU. Acta Unversitatis Agriculturae Sueciae, Uppsala, Sweden. Available at http://epsilon.slu.se/eng/index.html.
Barre, P., Montagnier, C.H., Chenu, C., Abbadie, L., & Velde, B. (2008). Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil, 302, 213-220.
Biscaye, P.E. (1965). Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin,76, 803–832.
Borchardt, G. (1989). Smectite. In Dixon, J.B., and Weed S.B. (Eds.), Minerals in Soil Environments, 2nd edition (pp.675-727). American Society of America, Madison, Wisconsin, USA.
Bouyoucos, G.J. (1962) Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464-465.
Brady, N.C., & Weil, R.R. (1999). The nature and properties of soils. Prentice-Hall, Inc: Englewood Cliffs.
Chapman, H.D. (1965). Cation exchange capacity. In Black, C.A. (Ed.), Methods of Soil Analysis, Part 2 (pp. 891-900). American Society of Agronomy, Madison, Wisconsin, USA
Chorom, M., Baghernejad, M., & Jafari, S. (2009). Influence of rotation cropping and sugarcane production on the clay mineral assemblage. Applied Clay Science, 46, 385–395.
Fanning, D.S., Keramidas, V.Z., & ElDesoky, M.A. (1989). Mica. In Dixon, J.B., and Weed S.B. (Eds.), Minerals in soil environment (pp. 551-634). American Society of Agronomy, Madison, Wisconsin, USA. Hinsinger, P. (2002). Potassium. In Lal R. (Ed.), Encyclopedia of soil science (pp. 1035–1039). New-York: Marcel Dekker, Inc.
Huang, P.M. (2005). Chemistry of soil potassium. In Tabatabai, M.A., and Sparks, D.L. (Eds), Chemical Processes in Soil (pp. 221-292). American Society of Agronomy, Madison, Wisconsin, USA.
Jalali, M. (2005). Release kinetics of non-exchangeable potassium in calcareous soils. Communications in Soil Science and Plant Analysis, 36, 1903–1917.
Knudsen, D., Peterson, G.A., & Pratt, P.F. (1982). Lithium, sodium, and potassium. In Black, C.A. (Ed.), Methods of Soil Analysis, Part 2 (pp. 225-246). American Society of Agronomy, Madison, Wisconsin, USA.
Nelson, R.E. (1982). Carbonate and gypsum. In Page, A.L. (Ed.), Methods of Soil Analysis, Part 2 (pp. 181-199). American Society of Agronomy, Madison, Wisconsin, USA.
Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. In Page, A.L. (Ed.), Methods of Soil Analysis, Part 2 (pp.539-580). American Society of Agronomy, Madison, Wisconsin, USA.
Nilawonk, W., Attanandana, T., Phonphoem, A., Yost, R., & Shuai, X. (2008). Potassium release in representative maize-producing soils of Thailand. Soil Science Society of America Journal, 72, 791–797.
Olson, C.G., Thompson, M.L., & Wilson, M.A. (2000). Phyllosilicates. In Sumner, M.E. (ed), Handbook of Soil Science (pp. F-77–F-123). Boca Raton: CRC Press.
Proust, D., Eymery, J.P., & Beaufort, D. (1986). Supergene vermiculitization of a magnesian chlorite: iron and magnesium removal processes. Clays and Clay Minerals, 34, 572-580.
Rezapour, S., Jafarzadeh, A.A., Samadi, A., & Oustan, SH. (2009). Impacts of clay mineralogy and physiographic units on the distribution of potassium forms in calcareous soils in Iran. Clay Minerals, 44, 329-339.
Rezapour, S., & Samadi, A. (2012). Assessment of inceptisols soil quality following long-term cropping in a calcareous environment. Environmental Monitoring and Assessment,184, 1311-1323.
Rezapour, S., & Samadi, A. (2014) The spatial distribution of potassium status and clay mineralogy in relation to different land-use types in a calcareous Mediterranean environment. Arabian Journal of Geosciences, 7, 1013- 1047.
Rezapour, S., Taghipour, A., & Samadi, A. (2013). Modification in selected soil attributes as influenced by long-term continuous cropping in a calcareous-semiarid environment. Natural Hazards, 69, 1951–1966.
Ross, G.J., & Kodama, H. (1976). Experimental alteration of a chlorite into an interstratified chlorite-vermiculite by chemical oxidation. Clay Minerals, 24, 183-190.
Samadi, A., Dovlati, A., & Barin, M. (2008). Effect of continuous cropping on potassium forms and potassium adsorption characteristics in calcareous soils of Iran. Australian Journal of Soil Research, 46, 265-272.
Sharma, B.D., Mukhopadhyay, S.S., & Sawhney, J.S. (2006). Distribution of potassium fractions in relation to landforms in a Himalayan catena. Archives of Agronomy and Soil Science, 52, 469–476.
Sharma, A., Jalali, V.K., & Arora, S. (2010). Non-exchangeable potassium release and its removal in foot-hill soils of North-west Himalayas. Catena, 82, 112–117.
Soil Survey Staff. (2010). Keys to soil taxonomy. U. S. Department of Agriculture, Natural Resources Conservation Service, Washington.
Sparks, D.L. (1987). Potassium Dynamics in Soils. Advance in Soil Science, 6, 1-63.
Srinivasarao, C., Khera, M.S., & SubbaRao, A. (1994). Soil potassium depletion and K replenishment capacity of soils under intensive cropping. Journal Potassium Research, 10, 229-235.
Srinivasarao, C.H., Vittal, K., Tiwari, K.N., Gajbhiye, P.N., & Kundu, S.U. (2007). Categorisation of soils based on potassium reserves and production system: implications in K management. Australian Journal of Soil Research, 45, 438-447.
Timpson, M.E., Lee, S.Y., Ammons, J.T., & Foss, J.E. (1996). Mineralogical investigation of soils formed in calcareous gravelly alluvial, eastern Crete, Greece. Soil Science Society of America Journal, 60, 299-308.
Thomas, G.W. (1982). Exchangeable Cations. In Page et al. (Eds.), Methods of Soil Analysis, Part 2 (pp.159-166). Soil Science Society of American, Madison, Wisconsin, USA.
Thompson, M., & Ukrainczyk, L. (2002). Micas. In Dixon, J.B., and Schulz, D.G. (Eds.), Soil mineralogy with environmental applications (pp. 431-461). American Society of Agronomy, Madison, Wisconsin, USA.
White, G.N., & Dixon, J.B. (2003). Soil Mineralogy Laboratory Manual. 9th edition. Texas: Department of Soil and Crop Sciences.