The effect of physical and chemical treatments on runoff, infiltration and soil loss

Document Type: Full Article

Authors

Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

ABSTRACT- In recent years, intensive drought has caused a severe yield reduction in rain-fed trees. Increasing runoff of low amount rainfall can be used to provide partial water requirement of rain-fed trees. To achieve this objective, some strategies including gravel removal (G), rill construction across to slope (R) and applying of baking soda (S) and their effects on runoff, rainfall infiltration and soil loss were simulated by a laboratory rainfall simulator under 33 mm h-1 intensity in 60 minutes. The results showed that the combination of R+, G- and S+ significantly increase the soil loss, runoff, and runoff coefficient 14.43, 2.74 and 1.59 and decrease rainfall threshold and infiltration 2.1 and 1.57 times compared to the control, respectively. Separately, S+, R+ and G- were the most effective in the runoff enhancement (31.2, 29.3 and 22%) and in infiltration reduction (8.4, 7 and 5%), respectively. S+ had the most effect on soil loss due to dispersion of soil surface. Furthermore, the effect of R+ was more visible than G- in increasing the soil loss. Applying sodium bicarbonate (S) increased the sodium in runoff and sediment, but there were no salinity (EC= 0.51-0.60 dS m-1) and sodicity (SAR= 0.34-0.73) hazard in runoff. In saturated extract of sediment, the salinity (EC= 1.75-2.23 dS m-1) and sodium (SAR= 1.96-3.45) hazard were relatively high and low, respectively. Although, chemical treatments (S) did not show the sodicity hazard very much, the use of S must be considered carefully.

Keywords

Main Subjects


Article Title [Persian]

مطالعه اثر تیمار های فیزیکی و شیمیایی خاک بر رواناب، نفوذ و هدر رفت خاک

Authors [Persian]

  • حسین پرویزی
  • علیرضا سپاس‏خواه
بخش آبیاری، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران.
Abstract [Persian]

چکیده- در سال های اخیر خشکسالی های شدید، سبب کاهش چشمگیر محصول انجیر دیم شده است. افزایش رواناب حاصل از بارندگی های اندک می تواند برای تامین بخشی از نیاز آبی درختان انجیر دیم استفاده شود. برای رسیدن به این هدف استراتژی های مختلفی شامل عملیات فیزیکی حذف سنگریزه از خاک (G) و ایجاد شیار (R) و عملیات شیمیایی افزودن ماده شیمیایی بی کربنات سدیم (S) و تاثیر آن ها بر رواناب، نفوذ و هدر رفت خاک توسط دستگاه شبیه ساز باران در آزمایشگاه و تحت شدت 33 میلی متر بر ساعت و به مدت 60 دقیقه شبیه سازی گردید. نتایج نشان داد که نسبت به تیمار شاهد ترکیب سه استراتژی به طور معنا داری هدر رفت، رواناب و ضریب رواناب را به ترتیب 43/14، 74/2 و 59/1 برابر افزایش و حد آستانه بارش و نفوذ را 1/2 و 57/1 برابر کاهش می دهد. موثرترین استراتژی ها بر افزایش رواناب به ترتیب (%2/31)  S، (%3/29)R  و (%22)  Gو بر کاهش نفوذ (%4/8)  S، (%7)R  و (%5)  Gبودند. استراتژی افزایش ماده شیمیایی به دلیل ایجاد پراکنش ذرات سطحی خاک بیشترین تاثیر بر هدر رفت خاک را نشان داد. همچنین تاثیر شیار بر هدر رفت خاک بیشتر از حذف سنگریز بود. افزایش ماده شیمیایی باعث افزایش سدیم در رواناب و رسوب گردید اما این افزایش باعث خطر شوری (EC= 0.051-0.060 S m-1) و سدیمی شدن (SAR= 0.34-0.73) در رواناب نگردید. همچنین در عصاره اشباع رسوب خطر شوری (EC= 0.175-0.223 S m-1) و سدیمی شدن (SAR= 1.96-3.45) وجود نداشت. به طور کلی، اگر چه خطر سدیمی شدن در استفاده از ماده شیمیایی بی کربنات سدیم دیده نشد اما استفاده از آن باید با جانب احتیاط همراه باشد.

Keywords [Persian]

  • واژه های کلیدی:
  • بی کربنات سدیم
  • حذف سنگریزه
  • شبیه ساز باران
  • ایجاد شیار
  • ضریب رواناب
Abrahams, A.D., & Parsons, A.J. (1991). Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona. Journal of Hydrology, 122, 49-59.

Agassi, M., & Levy, G.J. (1991). Stone-cover and rain intensity: effects on infiltration, erosion and water splash. Australian Journal of Soil Research, 29, 565-575.

Aladenola, O.O., & Adeboye, O.B. (2010). Assessing the potential for rainwater harvesting. Water resources management , 24(10), 2129-2137.

Ali, A., Yazar, Aal, A., Aal, A.A., Oweis, T., & Hayek, P. (2010). Microcatchment water harvesting potential of an arid environment. Agricultural Water Management, 98, 96-104.

Armfield (1998). Instruction manual: rainfall simulator FEL3, Issue 8., Hampshire, England, Armfield Company.

Arzani, A. (2010). Water harvesting and urban centers in dry land alluvial megafans: Environmental issues and examples from central Iran. International Journal of Environmental Science and Development, 1(5), 387-391.

Chow, T.L., Rees, H.W., & Moodie, R.L. (1992). Effects of stone removal and stone crushing on soil properties, erosion and potato quality. Soil Science, 153, 242-249.

Defersha, M.B., Quraishi, S., & Melesse, A. (2011). The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia." Hydrology & Earth System Sciences, 15(7), 2367-2375

Eaton, F.M. (1950). Significance of carbonates in irrigation waters. Soil Science, 69, 123-133.

Epstein, E., Grant, W.J., & Struchtemeyer,  R.A. (1966). Effect of stone on runoff, erosion, and soil moisture. Soil Science Society of America Journal, 30, 638-640.

Farshad, A., & Zinck, J.A. (1998). Traditional irrigation water harvesting and management in semiarid western Iran: A case study of the Hamadan region. Water International,23(3),146-154.

Gammoh, I.A. (2013). An improved wide furrow micro-catchment for large-scale implementation of water-harvesting systems in arid areas. Journal of Arid Environments, 88, 50-56.

Guo, T., Wang, Q., Li, D., & Jie, Z. (2010). Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi- arid loess region of northwestern China. Journal of Soils Sediments, 10, 1200-1208.

HosseiniAbrishami, S.M. (1994). Rainfall and Flood water Harvesting in Rural Areas, 2nd. Ed., Mashhad, Astane-Ghods Publication. (In Persian).

Javadi, P., Rouhipour, H., & Mahbubi, A. (2005). Effect of rock fragments cover on erosion and overland flow using flume and rainfall simulator. Iranian Journal of Range and Desert Research, 12(3), 287-310. (In Persian).

Jung, L. (1960). The influence of the stone cover on runoff and erosion on slate soils. International Association of Scientific Hydrology Publication, 53, 143-153.

Krishna, H.J. (2005). The success of rainwater harvesting in Texas-a model for other states. Paper presented at the North American rainwater harvesting conference, Seattle, WA.

Mandal, U.K., Rao, K.V., Mishra, P.K., Vittal, K.P.R. Sharma, Narsimlu, K.L.B. & Venkanna, K. (2005). Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. European journal of soil science, 56, 435-443.

MartínezMurillo, J.F.,  NadalRomero, E., Regüés, D., Cerdà, A.,  & Poesen, J. (2013). Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena, 106, 101-112.

MartinezZavala, L.M., & Jordan, A. (2008). Effect of rock fragment cover on inter rill soil erosion from bare soils in Western Andalusia, Spain. Soil Use Management, 24, 108-117.

MartinezZavala, L.M., Jordan, A. Bellinfante, N., & Gil, J. (2010). Relationships between rock fragment and cover and soil hydrological response in a Mediterranean environment. Soil Science and Plant Nutrition, 56(1), 95-104.

Mzirai, O., & Tumbo, S. (2010) . Macro-catchment rainwater harvesting systems: challenges and opportunities to access runoff. Journal of Animal & Plant Sciences, 7(2), 789-800.

Nyssen, J., Haile, M., Poesen, J., Deckers, J., & Moeyersons, J. (2001). Removal of rock fragments and its effect on soil loss and crop yield, Tigray, Ethiopia. Soil Use Management, 17, 179-187.

Noroozi, A.A., & Ghoddousi, J. (2001). Recent rainwater harvesting progresses in Iran. 10th International Rainwater Catchment Systems Conference "Rainwater International 2001", Mannheim, Germany.

Oweis, T., & Hachum, A. (2006). Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management, 80, 57-73.

Poesen, J., & IngelmoSanchez, F. (1992). Runoff and sediment yield from topsoil with different porosity and affected by rock fragment cover and position. Catena, 19, 451-474.

Richards, A.L. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture United States Salinity Laboratory Staff, Handbook No. 60.

Romkens, M.J.M., Helming, K., & Prasad, S.N. (2001). Soil erosion under different rain fall intensities, surface roughness and soil water regimes. Catena, 46,103-123.

RuizSinoga, J.D., RomeroDiaz, A., Ferre Bueno, E., & MartínezMurillo, J.F. (2010). The role of soil surface conditions in regulating runoff and erosion processes on a metamorphic hillslope (Southern Spain): Soil surface conditions, runoff and erosion in Southern Spain. Catena, 80(2), 131-139.

Sepaskhah, A.R., KamgarHaghighi, A.A., & Moosvi, S.A.A. (1992). Evaluation of hydrological parameters for design of micro-catchment water harvesting in a semi-arid climate. Iranian Journal of Science and Technology, 16, 105-116.

Serajzadeh, H. (2007). Different Methods of Water Harvesting: Brief Introduction on Small Water Works., Tehran, Scientific Publication Institute. (In Persian).

Smets, T., LópezVicente, M., & Poesen, J. (2011). Impact of subsurface rock fragments on runoff and interrill soil loss from cultivated soils. Earth Surface Processes and Landforms, 36(14), 1929-1937.

Tahmasebi, R., & RajabiSani, R. (2006). Rainwater Collection in Natural Conditions an Approach for Solving Water Shortage in Arid and Semi-Arid Zones (Case Study: Latian Watershed–Iran). Journal of Geography and Development, 4(7), 23-42. (In Persian).

Valentin, C., & Casenave, A. (1992). Infiltration into sealed soils as influenced by gravel cover. Soil Science Society of America Journal, 56, 1667-1673.

Wang, X., Li, Z., Cai, C., Shi, Z., Xu, Q., Fu, Z., & Guo, Z. (2012). Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in South-West China. Geomorphology, 151, 234-242.

Wilcox, P.B., Wood, M.K., & Tromble, M. (1988). Factors influencing infiltrability of semiarid mountain slopes. Journal of Range Management, 41(3), 197-206.