The effect of exogenous silicon on seed germination and seedling growth of wheat cultivars under salt stress conditions

Document Type : Full Article

Authors

Department of Crop Production, College of Agriculture, Shiraz University, Shiraz, I. R. Iran

Abstract

ABSTRACT- Seed germination and early seedling growth are critical stages for plants establishment and production, particularly under salinity conditions. Exogenous application of silicon (Si) can enhance germination as well as seedling growth. In this experiment, the effect of priming with Si (0, 0.75, 1.5 and 2.25 mM sodium silicate) on seed germination and seedling growth under NaCl (0, 100 and 150 mM) conditions was studied in two wheat cultivars of Kavir (salt tolerant) and Shiraz (salt sensitive). The experiment was designed as a factorial based on completely randomized design with three replications in the laboratoryof college of Agriculture, Shiraz University, in 2012. Results showed that seed priming by Si improved germination percentage, germination rate, vigor index, shoot and root length and seedling dry weight in both stress and non-stress conditions. Moreover, Si increased K+ uptake and K+/Na+ ratio and decreased Na+ content of cultivars with the effect of 2.25 mM being more pronounced. On the contrary, salt stress reduced the above traits andK+ uptake and K+/Na+ ratio and increased mean germination timeand Na+ uptake in both cultivars with the negative effects of 150 mMNaCl being more severe. However, the tolerant cultivar (Kavir) accumulated less Na+ and more K+ and had greater K+/Na+ ratio compared to non-tolerant cultivar (Shiraz). Although the salinity adversely affected seed germination and seedling growth in both cultivars, Kavir (tolerant cultivar) was less affected. It was concluded that priming with Si may promote germination and subsequent seedling growth of wheat cultivars under salinity conditions by reducing Na+ in favor of K+ accumulation.

Keywords

Main Subjects


Article Title [Persian]

تاثیر کاربرد سیلیس بر جوانه‌زنی و رشد گیاهچه ارقام گندم تحت شرایط تنش شوری

Authors [Persian]

  • کبری مقصودی
  • یحیی امام
بخش زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ج. ا. ایران.
Abstract [Persian]

چکیده- جوانه­زنی بذر و رشد اولیه گیاهچه از مراحل حساس در استقرار و تولید عملکرد گیاهان زراعی بویژه در شرایط تنش شوری می­باشند. کاربرد سیلیس می­تواند موجب بهبود جوانه­زنی و رشد گیاهچه گردد. این پژوهش با هدف بررسی تاثیر پیش تیمار بذر با سیلیس در غلظت­های مختلف (0، 75/0، 5/1 و 25/2 میلی­مولارسیلیکات سدیم) بر جوانه­زنی و رشد گیاهچه دو رقم گندم کویر (مقاوم به شوری) و شیراز (حساس به شوری) در شرایط تنش کلرید سدیم (0، 100 و 150 میلی­مولار) به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در گلخانه پژوهشی دانشکده کشاورزی دانشگاه شیراز  در سال 1391 به اجرا در آمد. نتایج نشان داد که پیش تیمار بذر با سیلیس سبب افزایش درصد جوانه­زنی، سرعت جوانه­زنی، بنیه بذر، طول ریشه­چه و ساقچه و وزن خشک گیاهچه ارقام گندم در هر دو شرایط تنش و عدم تنش شوری گردید و نیز کاهش مدت زمان جوانه­زنی را در هر دو شرایط به همراه داشت. بعلاوه،‏ کاربرد سیلیس موجب افزایش غلظت پتاسیم و نسبت پتاسیم به سدیم و نیز کاهش غلظت سدیم گردید و تاثیر غلظت 25/2 میلی مولار سیلیکات سدیم مشهودتر از سایر غلظت­های به کار رفته بود. در مقابل، تنش شوری سبب کاهش صفات اندازه­گیری شده گردید و افزایش مدت زمان جوانه­زنی و غلظت سدیم را در هر دو رقم به همراه داشت. با این حال، رقم مقاوم به شوری (کویر)، در شرایط تنش، سدیم کمتر و نیز پتاسیم بیشتری را در مقایسه با رقم حساس به شوری (شیراز) در خود تجمع داد. اگر چه با افزایش غلظت NaCl (150 میلی مولار) تاثیر منفی شوری بر پارامترهای اندازه­گیری شده در هر دو رقم بیشتر بود، با این حال، رقم مقاوم کویر تاثیر کمتری از تنش شوری در مقایسه با رقم حساس شیراز پذیرفت. در مجموع می­توان نتیجه­گیری نمود که پیش تیمار بذر با سیلیس می­تواند سبب بهبود جوانه­زنی شود و نیز از طریق افزایش تجمع پتاسیم و کاهش سدیم سبب رشد و در نتیجه استقرار بهتر گیاهچه­های گندم تحت شرایط تنش شوری گردد. 

Keywords [Persian]

  • واژه های کلیدی:
  • گندم
  • سیلیس
  • شوری
  • جوانه‌زنی
  • رشد گیاهچه
AbdulBaki, A.A., & Anderson, J.D. (1970). Viability and leaching of sugars from germinating barley. Crop Science, 10(1), 31-34.
Ahmed, M., Qadeer, U., & Aslam, M.A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6(3), 594-607.
Ahmed, M., & Khurshid, Y. (2011). Does silicon and irrigation have impact on drought tolerance mechanism of sorghum?.Agricultural water management, 98(12), 1808-1812.
Ahmad, M.S.A., Javed, F., & Ashraf, M. (2007). Iso-osmotic effect of NaCl and PEG on growth, cations and free proline accumulation in callus tissue of two indica rice (Oryza sativa L.) genotypes. Plant Growth Regulation, 53(1), 53-63.
Belcher, E.W., & Miller, L. (1975). Influence of substrate moisture level on the germination of sweetgum and sand pine seed. In Proceedings of the Association of Official Seed Analysis, 65, 88-89.
Borjian, A.R., & Emam, Y. (2001). Effect of urea foliar feeding on grain protein content and quality in two winter wheat cultivars. Iran Agricultural Research, 20, 37-52
Cabuslay, G.S., Ito, O., & Alejar, A.A. (2002). Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Science, 163(4), 815-827.
Ellis, R.H., & Roberts, E.H. (1981). The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9, 373-409.
Emam, Y. (2011). Cereal Production. 4th ed. Shiraz, Iran: Shiraz University Press. (In Persian).
Epstein, E. (1999). Silicon. AnnualReview of Plant Physiology, 50, 641–664.
Gao, X., Zou, C., Wang, L., & Zhang, F. (2006). Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition, 29(9), 1637-1647.
Ghoulam, C., Foursy, A., & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and experimental Botany, 47(1), 39-50.
Gong, H., Zhu, X., Chen, K., Wang, S., & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169(2), 313-321..
Gong, H.J., Randall, D.P., & Flowers, T.J. (2006). Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant, Cell & Environment, 29(10), 1970-1979.
Gong, H.J., Chen, K.M., Zhao, Z.G., Chen, G.C., & Zhou, W.J. (2008). Effects of silicon on defence of wheat against oxidative stress under drought at different developmental stages. Biologia Plantarum, 52(3), 592-596.
Gunes, A., Inal, A., Bagci, E.G., & Pilbeam, D.J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1-2), 103-114.
Hattori, T., Inanaga, S., An, P.S., Araki, H.P., Morita, S., Luxová, M., & Lux, A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4), 459-466.
Hattori, T., Sonobe, K., Inanaga, S., An, P., Tsuji, W., Araki, H., & Morita, S. (2007). Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental and Experimental Botany, 60(2), 177-182.
He, Y.L., & Liu, Q. (2002). Thermo tolerance related to antioxidation induced by salicylic acid and heat acclimation in tall fescue seedlings. Journal of Plant Physiology and Molecular Biology,  28, 89-95.
Inanaga, S., & Okasaka, A. (1995). Calcium and silicon binding compounds in cell walls of rice shoots. Soil Science and Plant Nutrition, 41(1), 103-110.
Iqbal, M., & Ashraf, M. (2005). Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regulation, 46(1), 19-30.
Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920-931.
Lee, S.K., Sohn, E.Y., Hamayun, M., Yoon, J.Y., & Lee, I.J. (2010). Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems, 80(3), 333-340.
Liang, Y., Chen, Q.I.N., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 160(10), 1157-1164.
Liang, Y., Zhang, W., Chen, Q., & Ding, R. (2005). Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environmental and Experimental Botany, 53(1), 29-37.
Liang, Y., Shen, Q., Shen, Z., & Ma, T. (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition, 19(1), 173-183.
Lu, C.M., Zhang, C.Y., Wen, J.Q., & Wu, G.R. (2002). Effects of nano material on germination and growth of soybean. Soybean Science, 21(3), 168-171.
Ma, J.F., & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397.
Mera, M.U., & Beveridge, T.J. (1993). Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis. Journal of Bacteriology, 175(7), 1936-1945.
Munns, R., & James, R.A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant and Soil, 253(1), 201-218.
RémusBorel, W., Menzies, J.G., & Bélanger, R.R. (2005). Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiological and Molecular Plant Pathology, 66(3), 108-115.
Saqib, M., Zörb, C., & Schubert, S. (2008). Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Functional Plant Biology, 35(7), 633-639.
Smedema, L.K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and Drainage Systems, 16(2), 161-174.
TaleAhmad, S., & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47(1), 17-27.
Wang, X., Wei, Z., Liu, D., & Zhao, G. (2011). Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology, 10(4), 545.
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., & Kwak, S.S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.
Wang, X.D., OuYang, C., Fan, Z.R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6, 700-708.
Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035-1059.
Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 124(3), 941-948.
Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.
Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52(1), 157-160.
Wang, W.B., Kim, Y.H., Lee, H.S., Kim, K.Y., Deng, X.P., & Kwak, S.S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47 (7), 570-577.
Wang, X.D., OuYang, C., Fan, Z.R., Gao, S., Chen, F., & Tang, L. (2010). Effects of exogenous silicon on seed germination and antioxidant enzyme activities of Momordica charantia under salt stress. Journal of Animal and Plant Science, 6, 700-708.
Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science & Plant Analysis, 13(12), 1035-1059.
Zhu, J.K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology, 12 4(3), 941-948.
Zhu, Z., Wei, G., Li, J., Qian, Q., & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167 (3), 527-533.
Zuccarini, P. (2008). Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum, 52 (1), 157-160.