The effect of two humic substances on the growth and lead Uptake of corn in calcareous soil

Document Type: Full Article


Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, I. R. Iran


ABSTRACT- In the past few decades, accumulation of heavy metals, such as lead (Pb), in soils has increased as a result of human activities.The environmental hazard associated with soil enrichment in heavy metals is related to their mobility and plant availability. Application of various materials such as humic may influence the amount of Pb taken up by plant. Four levels of each of liquid and solid commercial humic substances were applied in this study which were performed as two completely randomized factorial design experiments in a calcareous soil polluted with three levels of Pb. Results of a greenhouse study with corn (Zea mays L., cv Hido) showed that the two commercial humic substances with different chemical composition, affected dry mater yield differently. Influences of humic substances on dry mater yield were most likely dependent on their chemical composition. Maximum dry mater yield was observed at manufacturer's recommended levels of humic substances. But, the solid humic treatments had no significant effect on dry mater yield. Application of both liquid and solid commercial substances significantly increased uptake of Pb in corn shoots. Addition of humic substances significantly increased the enrichment factor in both experiments but affected the micronutrient uptake only slightly.


Main Subjects

Article Title [Persian]

تاثیر دو ماده هیومیک بر رشد و جذب سرب گیاه ذرت در یک خاک آهکی

Authors [Persian]

  • راضیه کاظمی
  • نجفعلی کریمیان
  • عبدالمجید رونقی
  • جعفر یثربی
Abstract [Persian]

چکیده-   در چند دهه گذشته، در نتیجه فعالیت های انسانی، غلظت فلزات سنگین از جمله سرب در محیط زیست به طور آشکاری افزایش یافته است. خطر اصلی زیست محیطی ناشی از فلزات سنگین خاک مربوط به غلظت شکل های متحرک وقابل جذب توسط گیاه می باشد، کاربرد مواد مختلف از جمله مواد هیومیک ممکن است به دلیل تاثیر بر حلالیت و تحرک آن ها در خاک میزان جذب سرب توسط گیاه را تحت تاثیر قرار دهد. در این تحقیق به منظور بررسی اثر مواد هیومیک چهار سطح از هر کدام از مواد هیومیک تجاری مایع  و جامد در دو آزمایش فاکتوریل در قالب طرح کاملا تصادفی در یک خاک آهکی آلوده شده با سه سطح سرب به کار برده شد. نتایج این تحقیق گلخانه ای نشان داد که تاثیر دو ماده هیومیک با ترکیبات شیمیایی متفاوت بر وزن خشک  گیاه متفاوت بوده است. تاثیر مواد هیومیک بر وزن خشک گیاه به مقدار زیادی به ترکیب شیمیایی آن ها بستگی دارد. در هر دو آزمایش بیشترین میزان وزن خشک در سطوح توصیه شده به وسیله سازنده این مواد مشاهده شد، اما تیمارهای ماده هیومیک تجاری جامد اثر معنی داری بر میزان وزن خشک گیاه نداشت. کاربرد هر دو ماده هیومیک جذب سرب در گیاه را به طور معنی داری افزایش داد. در هر دو آزمایش، اضافه کردن مواد هیومیک فاکتور غنی سازی را به طور معنی داری افزایش داد، اما اثر کمی بر جذب عناصر میکرو داشت.

Keywords [Persian]

  • واژه های کلیدی:
  • ماده هیومیک
  • سرب
  • خاک آهکی
  • ذرت
Adriano, D.C. (2001). Trace elements in the terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. Springer, New York, NY. pp. 349-353.
 Antoniadis, V., & Alloway, B.J. (2002) .The role of dissolved organic carbon in the mobility of Cd, Ni, and Zn in sewage sludge-amended soils. Environmental Pollution, 117, 515–521.
 Asik, B.B., Turan, M.A., Celik, H., & Katkat V.A. (2009). Effect of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. ‘Salihli’) under conditions of salinity. Asian Journal of Crop Science, 1, 87-95.
Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakarova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860-865.
Branquinho, C., Serrano, H.C., Pinto, M.J., & Martins-Loucao, M.A. (2007). Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environmental Pollution, 146,437-443.
Bremner, J.M. (1996). Nitrogen total. In Sparks, D.L., (Ed), Methods of soil analysis part 3: Chemical methods (pp: 1085-1122). Soil Science Society of America & America Society of Agronomy, Madison, WI.
Bouyoucos, C.J. (1962). Hydrometer method for making particle-size analysis for soils. Agronomy Journal, 54, 464-465.
Chen, Y., & Aviad., T. (1990). Effect of humic substances on plant growth. In Maccarthy, P. et al. (Eds.), Humic Substances in soil and crop Sciences: Selected readings (pp: 161-186). American Society of Agronomy, Madison, WI.
 Clapp, C.E., Hayes, M.H.B., Senesi, N., Bloom, P.R., & Jardine, P.M. (2000). Humic substances and chemical Contaminants. Soil Science Society of America, Madison, WI.
 Escobar, R.F., Benlloch, M., Barranco, D., Duenas, A., & Ganan, J.A.G. (1996). Response of olive trees to foliar application of humic substances extracted from leonardite. Scientia, 66, 191-200.
Evangelou, M.W.H., Daghan, H., & Schaeffer, A. (2004). The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere, 57, 207-213.
Gao, K., Pearce, J., Jones, J., & Taylor, C. (1999). Interaction between peat, humic acid, and aqueous metal ions. Environmental Geochemistry and Health, 21(13), 13-26.
Gharaie, H.A. (2009). Lead adsorption characteristics of selected calcareous soils of Iran and their relationship with soil properties. American-Eurasian Journal of Agricultural and Environmental Sciences, 6, 637–641.
 Gharaie, H.A., Maftoun, M., & Karimian, N. (2002). Lead adsorption characteristics of selected calcareous soils of Iran and their relationship with soil properties. Proc. 17th World Congr. Soil Science.
Hartz, T.K., & Bottoms, T.G. (2010). Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. Hortscience, 45(6), 906–910.
Helmke, P.A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In Sparks, D.L., (Ed), Methods of soil analysis Part 3 (pp: 551-573). SSSA Book Ser. 5, SSSA, Madison, WI.
Imai, A., Fukushima, T., Matsushige, K., Kim, Y.H., & Choi, K. (2002). Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Research, 36, 859- 870.
 Jarrah, M., Ghasemi Fasaei, R., Karimian, N., Ronaghi, A., Zarei, M., & Mayel, S. (2014). Investigation of arbuscular mycorrhizal fungus and EDTA efficiencies on lead phytoremediation bysunflower in a calcareous soil. Bioremediation Journal, 18(1), 71-79.
John, L.R., Ahmad, P., Gadgill, K., & Sharma, S. (2008). Effect of cadmium and lead on growth, biochemical parameters, and uptake in Lemna polyrhiza. Plant, Soil and Environment, 54 (6), 262-270.
Khan, S., Cao, Q., Chen, B.D., & Zhu, Y.G. (2006). Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked contaminated soil. Journal of Soils and Sediments, 6(4), 236-242.
Lagier, T., Feuillade, G., & Matejka, G. (2000). Interactions copper and organic macromolecules: determination of conditional complexation constants. Agronomie, 20,  537–546.
Lindsay, W.L., & Norvell, W.A. (1978).  Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
Lingbo, L., Song, Y., Congbi, H., & Guangbo, S. (2005). Comprehensive characterization of oil refinery effluent-derived humic substances using various spectroscopic approaches. Chemosphere, 60, 467–476.
 Loppert, R.H., & Suarez D.L. (1996). Carbonate and gypsum. In Klute, A. et al. (Eds.) Methods of soil analysis. Part 3. 3rd ed. (pp. 437-474). American Society of Agronomy , Madison, WI.
Lorestani, B., Cheraghi, M., & Yousefi, N. (2011). Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyperaccumulator plant in the industrial town of Vian, Iran. Archives of Biological Science Belgrade, 63(3), 739-745.
Malik, N., & Biswas, A.K. (2012). Role of higher plants in remediation of metal contaminated sites. Scientific Reviews and Chemical Communications, 2(2), 141-146.
Marschner, B., & Kalbitz, K. (2003). Control of bioavailability and biodegradability of dissolved organic matter in soil. Geoderma, 113, 211–235.
Maywald, F., & Weigel, H.J. (1997). Biochemistry and molecular biology of heavy metal accumulation in higher plants. Landbauforschung Volkenrode. 47, 103-126.
Mishra, K.P. (2009).  Lead exposure and its impact on immune system: a review. Toxicology in Vitro, 23, 969-972.
Mohiuddin, K.M., Zakir, H.M., Otomo, K., Sharmin, S., & Shikazono, N. (2010). Geochem distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science and Technology, 7 (1), 17-28.
Nabulo, G., Origa, H.O., Nasinyama, G.W., & Cole, D. (2008). Assessment of Zn, Cu, Pb, and Ni contamination in wetland soils and plants in the lake basin. International Journal of Environmental Science and Technology, 5 (1),  65-74.
Naz, A., Khan, S., Qasim, M., Khalid, S., Muhammad, S., & Tariq, M. (2013). Metals toxicity and its bioaccumulation in purslane seedlings grown in controlled environment. Natural Science, 5(5), 573- 579.
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. In Sparks, D.L., (Ed), Methods of Soil Analysis part 3: Chemical methods (pp: 961-1010). Soil Science Society of America & America Society of Agronomy, Madison, WI.
Olsen, S.R.C., Cole, V., Watanable, F.S., & Dean, L.A. (1954). Estimation of available phosphorus in soil by extraction with sodium bicarbonate, USDA, Cir. 939. US. Govern. Print Office, Washington, DC.
Sanchez, A.S., Juarez, M., Sachnez Andereu, J.,  Jorda, J., & Bermudez, D. (2005). Use of humic substances and amino acids to enhance iron availability for tomato plants from applications of the chelate FeEDDHA. Journal of Plant Nutrition, 28, 1877-1886.
Sangeetha, M., Singaram, P., & Devi, R.D. (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability.In 18th World Congress of Soil Science July 9-15, Philadelphia, Pennsylvania, USA.
Seregin, I.V., & Ivanove, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48(4), 523-544.
Shakeri, A., & Modabberi, S. (2014). Assessment of trace elements concentration in soils of the Hashtgerd area using geochemical and multivariate statistical methods, Alborz province, Iran. Journal of Engineering Geology, 8(1), 2049-2070.
Sharma, P., & Dubey R.S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52. 
Strawn, D.G., & Sparks D.L. (2000). Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in Soil. Soil Science Society of America Journal, 64(1), 144-156.
Summer, M.E., & Miller, W.P. (1996). Cation exchange capacity and exchange coefficient. In Sparks, D.L., (Ed), Methods of Soil Analysis Part 3: Chemical Methods, (pp:1201-1230). Soil Science Society of America & America Society of Agronomy, Madison, WI.
Tan, K.H. (2003). Humic Matter in Soil and Environment, Principles and Controversies, Marcel Dekker, Inc. 270 Madison Avenue, New York, NY.
Turan. M.A., Asike, B.B., Katkat, A.V., & Celik, H. (2011). The effects of soil-applied humic substances to the dry weight and mineral nutrient uptake of maize plants under soil-salinity conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 171-177.
Ulukan, H. (2008). Effect of soil applied humic acid at different sowing times on some yield components in wheat hybrids. International Journal of Botany, 4, 164-175.
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K., & Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technology, 100(20), 4616–4622.
Zhang, Y., Yang, X., Zhang, S., Tian1, Y., Guo1, W., & accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils. Journal of Soil Science and Plant Nutrition, 13(1), 43-53.