A study of treated municipal waste leachate and Zeolite effects on soils

Document Type: Full Article


1 Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, I. R. Iran

2 Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, I. R. Iran


ABSTRACT- As the world's population has grown and become more urban and affluent, waste production has raised drastically. Wastewater reuse has been identified as a way to alleviate water scarcity and improve crop productivity and environmental sustainability. To address the issue, a soil column experiment was carried out in a 3 × 3 factorial randomized block design including three treatments of adsorbents (non-pretreated leachate (L1), rice husk filtered leachate (L2), activated carbon filtered leachate (L3)) and three levels of zeolite (0, 5 and 10% by soil weight).A decrease in drainage water volume through the experiment period was observed. Application of zeolite at 5% level could improve soil removal efficiency and had a positive impact on the quality of the wastewater, as indicated by changes in EC, Na+, Ca2++Mg2+, Cl- (decreased by 22%, 15%, 24%, 15% respectively) and total P (increased by 12%) for treatment of leachate. However, adding 10% zeolite did not make a significant difference (p<0.05). Adsorbents used in the experiment had a significant effect (p<0.05) on the parameters such as N-NH4+, SAR, total P and Na+ content. Changes in most parameters for the L3 treatment were statistically significant (p<0.05) compared to other leachates (less N-NH4+ (40%), total P (33%) and more Ca2++Mg2+ (14.3%), Na+ (14%)) indicating an increase in adsorbent efficiency due to rice husk activation. Therefore, it can be concluded that application of zeolite can improve soil removal efficiency for treatment of leachate, but the rates of application can be case sensitive depending on the soil and the type of zeolite.


Main Subjects

Article Title [Persian]

مطالعه اثرات استفاده از شیرابه تیمار شده پسماند زباله شهری و زئولیت برخاکها

Authors [Persian]

  • حسین میر سید حسینی 1
  • رسول کریمی 1
  • سپیده باقری 1
  • حسن طباطبایی 2
1 گروه علوم خاک ، دانشکده کشاورزی، دانشگاه تهران، کرج ، ج. ا. ایران
2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهر کرد، شهر کرد، ج. ا. ایران
Abstract [Persian]

چکیده- همانطور که جمعیت جهان در حال رشد بوده و شهر نشینی و رفاه افزایش یافته ، تولید زباله نیز به شدت در حال افزایش می باشد. استفاده مجدد ازفاضلاب به عنوان یک راهکار برای کاهش کمبود آب، بهبود تولید محصول و پایداری محیط زیست شناخته شده است. به جهت بررسی این مسئله، آزمایش ستون خاک براساس طرح بلوک تصادفی فاکتوریل 3×3 شامل سه تیمار جاذب (شیرابه بدون پیش تصفیه (L1)، شیرابه  عبور نموده از پوسته برنج (L2)، شیرابه عبور نموده از کربن فعال (L3)) و سه سطح زئولیت (0، 5 و 10 % وزنی خاک)  انجام پذیرفت. حجم آب زهکشی شده در طول آزمایش کاهش یافت. کاربرد سطح 5% زئولیت کارایی برداشت خاک را می تواند بهبود بخشد و اثر مثبتی بر کیفیت زه آب دارد. همچنان که به صورت تغییرات در EC, Na+, Ca2++Mg2+Cl-(تا 22%، 15%، 24%، %15 کاهش یافته) و فسفر کل (تا 12% افزایش یافته) در تیمار شیرابه نشان داده شده است. اما افزودن 10%  زئولیت تفاوت معنی داری نداشت (05/0p<). جاذب های مورد استفاده در این آزمایش اثر معنی داری بر پارامتر هایی مانند N-NH4+, SAR، فسفر کل و مقدار سدیم داشتند. تغییرات در اغلب پارامترها در تیمار L3از نظر آماری به طور معنی دار (05/0p <) در مقایسه با دیگر شیرابه ها (( N-NH4+(40%) و فسفر کل (33%)  بیشتر و Ca2++Mg2+(3/14%) و سدیم (14%) کمتر) متفاوت بود، که نشان دهنده افزایش کارایی جاذب ناشی از فعال سازی پوسته برنج می باشد. کاربرد زئولیت می تواند کارایی برداشت خاک را برای تیمار شیرابه بهبود بخشد، اما سطوح کاربرد بسته به خاک و نوع زئولیت متفاوت خواهد

Keywords [Persian]

  • زه آب
  • شیرابه
  • تصفیه زمینی
  • خاک
  • جاذب
Akkaya, E., Demur. A., Karadag. D., Varank G., Bingil, M.S., & Ozkaya, B. (2010). Post-Treatment of anaerobically medium-age landfill leachate. Environmental Progress and Sustainable Energy, 29, 78-84.

 Apachito, I., & Earache, P. (2010). Hemic acids removal from water by amino propyl functionalized rice husk ash. Journal of Hazardous Materials, 184, 775–781.

APHA. (1998). Standard methods for the examination of water and wastewater. (American Public: Health Association, Washington, D.C).1566 pp.

Buyoucos, C.J. (1962). Hydrometer method improved for making particle-size analysis of soil. Agronomy Journal, 54, 464-465.

Chernicharo, C.A.L. (2006). Post treatment options for the anaerobic treatment of domestic waste-water Reviews. Environmental Science and Biotechnology, 5, 73–92.

Golian, S., Saghafian, B., Sheshangosht, S., & Ghalkhani, H. (2010). Comparison of classification and clustering methods in spatial rainfall pattern recognition at Northern Iran. Theoretical and Applied Climatology, 102, 319–329.

Hale, S., Jensen, J., Jak, L., Oleszczuk, P., Hartnik, T.H., Henriksen, T.H., Okkenhaug, G., Martinsen V., & Cornelissen, G. (2013). Short-Term effect of the soil amendments activated carbon, biochar, and ferric oxy-hydroxide on bacteria and invertebrates. Environmental Science and Technology (Washington), 47, 8674-8683.

Halim, A.A., Abidin, N.N.Z., Awang, N., Ithnin, O., & Wahab, M. Sh. (2011). Ammoniaand COD removal from synthetic Leachate using rice husk composite adsorbent. Journal of Urban and Environmental Engineering, 5, 24-31.

Jahantigh, M. (2008). Impact of recycled water irrigation on soil chemical properties in an arid region. Pakistan Journal of Biological Sciences, 11, 2264-2268.

Kadirvelu, K., Thamaraiselvi, K., & Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption on to activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76, 63-65.

Kamath, S.R., & Proctor, A. (1998). Silica gel from rice hull ash: preparation and characterization. Cereal Chemistry, 75, 484-487.

Kotdawala, R.R., Kazantzis, N., & Thompson, R.W. (2008). Molecular simulation studies of adsorption of hydrogen cyanide and methyl ethyl ketone on zeoliteNaX and activated carbon. Journal of Hazardous Materials, 159, 169-176.

Lazarova, V., & Bahari, A. (2005). Water reuse for irrigation: Agriculture, Landscape, and TurfGrass, CRC Press. www.crcpress.com, 45-76.

Lee, K.G., Mohtar, A.M., Zainudin, N.F. Bhatia, S., & Mohamed A.R. (2005). Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash. Fuel, 84, 143-151.

 Li, P., cheng, X., Xue, B., Zhang, L., & Dezhi, S. (2013). Evaluation of Composted Sewage Sludge Application to soil. IERI Procedia, 5, 202-208.

Marks, A.L., Luthy, R.G., & Diwker, U.M. (1994). Semi-Continuous evaporation model for leachate treatment process evaluation. Environment progress, 13, 278–289.

 Mavaddati, S., Kianmehr, M . H., Allahdadi , I., & Chegini , G . R. (2010). Preparation of Pellets by Urban Waste Compost. International Journal of Environmental Research, 4, 4, 665-672.

 MDE. (2003). Maryland department of the environmental Guideline for Land Treatment of Municipal Wastewater (Washington MD PP.1-9 www.mad.state.md.us.)

 Ming, D.W., & Dixon, J.B. (1987). Quantitative determination of clinoptilolite in soils by a cation exchange capacity method. Clays Clay Minerals, 35, 463-468.

 Mohan, D., Singh, K.P., & Singh, V.K. (2008). Wastewater treatment using low cost activated carbons derived from agricultural byproducts -A case study. Journal of Hazardous Materials, 152, 1045–1053.

 Saber, M.S.M. (1986). Prolonged effect of land disposal of human waste on soil conditions. Water Science and Technology, 18, 371-374.

 Sparks, L., Page,  A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., & Sumner, M.E. (1982). Methods of Soil Analysis. Chemical and Microbiological Properties. 2nd ed. American Society of Agronomy Soil Science Society of AmericaInc. Madison Wisconsin USA.

 Tabatabaei, S.H., & Liaghat, A. (2004). Use of zeolite to control heavy metals in municipal wastewater applied for irrigation. Japanese Journal of ion Exchange. Japanese Association of Ion Exchange Press, 15, 2-7.

 Wang, Y., Liu, S. Xu, Z. Han, T. Chuan, S., & Zhu, T. (2006). Ammonia removal from leachate solution using natural Chinese Clinoptilolite. Journal of Hazardous Materials, 136: 735–740.

Yalcuk, A., & Ugurlu, A. (2009). Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technology, 100, 2521-2526.