Ion content and its correlation with some physiological parameters in olive cultivars in response to salinity

Document Type: Full Article

Authors

Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, I.R. Iran

Abstract

ABSTRACT- Olive (Olea europaea L.) is one of the most valuable and widespread fruit trees in Iran. Salt stress-induced changes in membrane stability, photosynthesis and antioxidant enzyme activity were examined on four olive cultivars (Dakal, Shiraz, Zard and Amigdalifolia) by emphasizing the correlation between measured parameters and ion (K+, Na+) accumulation. Plants were subjected to four salt treatments (0, 100, 150 or 200 mM NaCl) under greenhouse conditions. The exposure of the olive plants to increased salinity resulted in a decline in relative leaf chlorophyll content (RLCC), photosynthesis rate (Pn), transpiration rate (E) and leaf and root K+ content. NaCl increased superoxide dismutase (SOD) and peroxidase (POX) activity of olive leaves. Increasing the concentrations of NaCl in soil increased the concentration of Na+ in the leaves and roots. Differences in the effectiveness of Na+ exclusion mechanism among cultivars at high salinity reflected differences in salt tolerance. ‘Zard’, the better-adapted cultivar, displayed tolerance to high internal salt concentrations without apparent cell damage. Relationships between parameters involved in salinity response are discussed in relation to ion accumulation in leaves and roots of olive cultivars.

Keywords

Main Subjects


Article Title [Persian]

مقدار یون‌ها و رابطه آن با برخی ویژگی‌های فیزیولوژیکی در رقم‌های زیتون در پاسخ به تنش شوری

Authors [Persian]

  • فرزانه علیایی
  • سیروس قبادی
  • مهدیه غلامی
دانشگاه صنعتی اصفهان
Abstract [Persian]

چکیده- زیتون(Olea europaea L.)  یکی از باارزش­ترین و گسترده­ترین درختان میوه در ایران است. تغییراتی که در ثبات غشا، فتوسنتز و فعالیت آنزیم­های آنتی­اکسیدان در چهار رقم زیتون (‘دکل’، ‘شیراز’، ‘زرد’ و ‘آمیگدالیفولیا’) در اثر تنش شوری ایجادمی­شود با تأکید بر رابطه بین این ویژگی­ها و تجمع یون­های سدیم و پتاسیم مورد بررسی قرار گرفت. گیاهان در شرایط گلخانه­ای در معرض چهار تیمار  شوری (0، 100، 150 و 200 میلی مولار کلرید سدیم) قرار گرفتند. تیمار گیاهان زیتون با سطح­های بالای شوری، باعث کاهش مقدار کلروفیل نسبی برگ، فتوسنتز، تعرق و مقدار پتاسیم برگ و ریشه شد. تنش کلرید سدیم فعالیت آنزیم­های سوپراکسید دیسموتاز و پراکسیداز را در برگ­های زیتون افزایش داد. با افزایش غلظت کلرید سدیم در خاک، غلظت یون سدیم در برگ­ها و ریشه­ها افزایش یافت. تفاوت در کارایی مکانیسم دفع یون سدیم در رقم­های زیتون مورد مطالعه، سبب تفاوت در میزان تحمل آن­ها به تنش شوری شد. رقم ‘زرد’ بدون هیچ آسیب مشهودی به سلول­ها، بیشترین تحمل را به غلظت­های بالای نمک از خود نشان داد. رابطه بین ویژگی­های مورد مطالعه در پاسخ به تنش و تجمع یون­ها در برگ­ها و ریشه­های رقم­های زیتون به طور کامل مورد بحث قرار گرفت.

Keywords [Persian]

  • واژه های کلیدی:
  • آنتی اکسیدان آنزیم
  • تجمع یون
  • زیتون
  • پارامترهای فتوسنتزی
  • شوری
Agarwal, S., & Shaheen, R. (2007). Stimulation of antioxidant system and lipid peroxidation by abiotic stress in leaves of Momordica charantia. Brazilian Journal of Plant Physiology, 19, 149-161.

Armengaud, P., Sulpice, R., Miller, A. J., Stitt, M., Amtmann, A., & Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen  assimilation in Arabidopsis roots. Plant Physiology, 150, 772-785.

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391-396.

Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Review of Plant Sciences, 13, 17-42.

Bajji, M., Kinet, J. M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane  stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61-70.

Baum, S.F., Tran, P.N., & Silk, W. K. (2000). Effects of salinity on xylem structure and water use in growing leaves of sorghum. New Phytology, 146, 119-127.

Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., & Abdelly, C. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168, 889-899.

Bradford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biochemistry, 72, 248-254.

Candan, N., & Tarhan, L. (2003). Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiology and Biochemistry, 41, 35-40.

Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis, I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96, 235-247.

Demiral, M.A., Aktas Uygun, D., Uygun, M., Kasirga, E., & Karagozler, A. A. (2011). Biochemical response of Olea europaea cv. Gemlik to short-term salt stress. Turkish Journal of Biology, 35, 433-442.

Dionisio-Sese, M.L., & Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Science, 135, 1-9.

Dubey, R.S. (2005). Photosynthesis in plants under stressful conditions. In M. Pessarakli (Ed.), Handbook of photosynthesis (pp. 717-718). New York: CRC Press.

Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., & Turkan, I. (2007). Response of the cherry rootstock to salinity in vitro. Biologia Plantarum, 51, 597-600.

Franklin, J.A., & Zwiazek, J. J. (2004). Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate. Physiologia Plantarum, 120, 482-490.

Gao, S., Ouyang, S., Wang, S., Xu, Y., Tang, L., & Chen, E. (2008). Effect of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environment, 54, 374-381

Goreta, S., Bucevic-Popovic, V., Pavela-Vrancic, M., & Perica, S. (2007). Salinity-induced changes in growth, superoxide dismutase activity, and ion content of two olive cultivars. Journal of Plant Nutrition and Soil Science, 170, 398-403.

Jha, D., Shirley, N., Tester, M., & Roy, S.J. (2010). Variation in salinity tolerance and shoot sodium accumulation in Arabidopsis ecotypes linked to differences in the natural expression levels of transporters involved in sodium transport. Plant Cell Environment, 33, 793-804.

Kaya, C., Sonmez, O., Aydemır, S., & Dikilitas, M. (2013). Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turkish Journal of Agriculture and Forestry, 37, 188-194.

Khan, M.H., & Panda, S.K. (2008). Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiologia Plantarum, 30, 81-89.

Lutts, S., Kinet, J. M., & Bouharmon, J. (1996). NaCl induced senescence in leave of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annual of Botany, 78, 389-398.

 Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50, 227-231.

Marschner, H. (1995). Mineral nutrition of higher plants. (2nd ed.). London: Academic Press.

Meneguzzo, S., Navari-Izzo, F., & Izzo, R. (1999). Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology, 155, 274-280.

Menvielle-Bourg, F.J. (2005). Superoxide dismutase (SOD), a powerful antioxidant, is now available orally. Phototherapie, 3: 1-4.

Misra, N., & Gupta, A. K. (2006). Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. Journal of Plant Physiology, 163, 11-18.

Mousavi, A., Lessani, H., Babalar, M., Talaei, A.R., & Fallahi, E. (2008). Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. Journal of Plant Nutrition, 31, 1906-1916.

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.

Nebauer, S.G., Sanchez, M., Martinez, L., Lluch, Y., Renau-Morata, B., & Molina, R.V. (2013). Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. Plant Physiology and Biochemistry, 63, 61-69.

Noreen, Z., Ashraf, M., & Akram, N.A. (2012). Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). Journal of Applied Botany and Food Quality, 85, 91-96.

Omielon, J.A., Epistein, E., & Dvovak, J. (1991). Salt tolerance and ionic relations of wheat affected by individual chromosomes of salt tolerant Lophopyrum. Genome, 34, 961-974.

Parida, A.K., & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environment Safety, 60, 324-349.

Perica, S., Brkljaca, M., Goreta, S., Romic, D., & Romic, M. (2004). Vegetative growth and salt accumulation of six olive cultivars under salt stress. Acta Horticulture, 664, 555-560.

Perica, S., Goreta, S., & Vuletin Selak, G. (2008).  Growth, biomass allocation and leaf ion concentration of seven olive (Olea europaea L.) cultivars under increased salinity. Scientia Horticulturae, 117, 123-129.

Rodriguez, R., & Sanches, T. R. (1982). Peroxidase and IAA oxidase in germinating seeds of Cicer arientium L. Revista Espanola De Fisiologia, 38, 183-188.

Sepaskhah, A.R., & Yarami, N. (2010) Evaluation of macroscopic water extraction model for salinity and water stress in saffron yield production. International Journal of Plant Production, 4, 175-186.

Sharbatkhari, M., Galeshi, S., Shobbar, Z.S., Nakhoda, B., & Shahbazi, M. (2013). Assessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes. International Journal of Plant Production, 7, 437-454.

Sharma, N., Gupta, K., Gupta, S., & Hasegawa, H. (2005). Effect of NaCl salinity on photosynthetic rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica, 43, 609-613.

Sreenivasulu, N., Grimm, B., Wobus, U., & Weshke, W. (2000). Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 109, 435-442.

Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, K. (2011). Additive effects of Na+ and Cl- ions on barely growth under salinity stress. Journal of Experimental Botany, 62, 2189-2203.

Tavakkoli, E., Rengasamy, P., & McDonald, G.K. (2010). High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61, 4449-4459.

Van Rossun, M.W.P.C., Alberda, M., & Van Der Plas, L.H.W. (1997). Role of oxidative damage in tulip bulb scale micropropagation. Plant Science, 130, 207-216.

Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 14, 7370-7390.

Widodo, P.J.H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60, 4089-4103.

Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32, 667-685.

Young, C., & Jung, J. (1999). Water deficit-induced oxidative stress and antioxidative defenses in rice plants. Journal of Plant Physiology, 155, 255-261.