Effect of arbuscular mycorrhizal fungus, plant growth promoting rhizobacterium, and soil drying on different forms of potassium and clay mineral changes in a calcareous soil under maize planting

Document Type: Full Article


Department of Soil Science, College of Agriculture, Shiraz University, Shiraz, I. R. Iran


ABSTRACT- Greenhouse experiment was conducted in factorial experiment arranged as a completely randomized design (CRD) to evaluate the effect of Glomus intraradices, Pseudomonas fluorescence and soil drying on different forms of potassium (K) and the changes of clay minerals in a calcareous soil after maize planting. Treatments consisted of arbuscular mycorrhizal (AM) fungus at two levels: G0 (not inoculated with fungus) and G1 (inoculated with Glomus intraradices), bacteria at two levels B0 (not inoculated with bacterium) and B1 (inoculated with Pseudomonas fluorescence) and soil drying levels or four irrigation intervals of 2 (S0), 4(S1), 6(S2) and 8(S3) days. As soil drying increased, all forms of K increased and root colonization decreased. Inoculation of plants with microbial inoculants increased root colonization percentage and all forms of K in soil as compared to non microbial treatments.  However, the effect of single inoculation with bacterium was less pronounced. Co-inoculation treatments of plants with fungus and bacterium resulted in the maximum amounts of root colonization and K forms as compared to single inoculation of plants with each inoculum. The amount of illite-chlorite minerals increased as soil dryinglevels increased. In non mycorrhizal treatments, there were no smectite minerals, while in mycorrhizal treatments, the quantity of smectite minerals increased as the levels of soil dryingincreased. It might be concluded that biofertilizers and soil drying are effective in minerals weathering and dissolution and K releasing.


Main Subjects

Article Title [Persian]

اثرات قارچ میکوریز آربسکولار، باکتری محرک رشد گیاه و تنش خشکی بر روی شکل‏های مختلف پتاسیم و تغییرات کانی‏های

Authors [Persian]

  • مجید باقرنژاد
  • نجف علی کریمیان
  • مهدی زارعی
Abstract [Persian]

چکیده- آزمایش گلخانه ای با استفاده از آزمون فاکتوریل در قالب طرح کاملا تصادفی  به منظور بررسی اثرات قارچ گلوموس اینترارادایسز، باکتری سودوموناس فلورسنس و تنش خشکی بر روی شکل­های مختلف پتاسیم و تغییرات کانی­های رسی در یک خاک آهکی خاک زیر کشت ذرت  انجام شد. تیمارها شامل قارچ میکوریز آربسکولار در دو سطح  G0­(تلقیح نشده با قارچ)و­ G1 (گلوموس اینترارادایسز)­،  باکتری سودوموناس فلورسنس در دو سطح B0­ (تلقیح نشده با باکتری) و  B1­(سودوموناس فلورسنس­)، تنش خشکی در چهار سطح ­S0 (بدون تنش)،  S1­(تنشFC  75%)، S2(تنش FC50%) و S3­(تنشFC  25%) بود. با افزایش تنش خشکی، همه شکلهای پتاسیم افزایش و درصدکلنیزاسیون ریشه کاهش یافت. مایه زنی میکروبی درصد کلنیزاسیون ریشه و همه شکلهای پتاسیم خاک را در مقایسه با تیمارهای مایه زنی نشده افزایش داد. با این وجود اثرات مایه زنی انفرادی گیاه با باکتری کمتر بود. بیشترین درصد کلنیزاسیون ریشه و مقدار شکلهای مختلف پتاسیم در تیمارهای مایه زنی گیاه با هر دو قارچ و باکتری در مقایسه با تیمارهای مایه زنی انفرادی مشاهده شد. با افزایش تنش خشکی مقدار کانی های ایلایت-کلریت افزایش یافت. با افزایش سطوح تنش خشکی، در تیمارهای غیر میکوریزی کانی های اسمکتیت مشاهده نگردید در حالیکه در تیمارهای میکوریزی مقدار این کانی ها افزایش یافت. بطور کلی نتایج  نشان داد که کودهای زیستی و تنش خشکی در هوادیدگی  و انحلال کانیها و  رهاسازی پتاسیم موثر هستند.

Keywords [Persian]

  • واژه های کلیدی:
  • گلوموس اینترارادایسز
  • سودوموناس فلورسنس
  • تنش خشکی
  • شکلهای پتاسیم
  • کانی شناسی خاک
Alexandratos, N. (2003). World agriculture: towards 2015/30. Global Food Security and the Role of Sustainable Fertilization Congress (pp: 1-21). Rome, Italy, March 26-28.

Aliasgharzadeh, N., Rastin, N.S., Towfighi, H., & Alizadeh, A. (2001). Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza, 11, 19-122.

Al-Karaki, G.N., & Al-Raddad, A. (1997). Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza, 7, 83-88.

Aoudjit, N., Robert, M., Elsass, F., & Curmi, P. (1995). Detailed study of smectite genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, 30, 143-154.

Badraoui, M., Bloom, P.R., & Delmaki, A. (1992). Mobilization of non-exchangeable K by ryegrass in five Moroccan soils with and without mica. Plant and Soil, 140, 55-63.

Basak, B., & Biswas, D. (2009). Influence of potassium solubilizing microorganism and waste mica on potassium uptake dynamics by Sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil, 317, 235-255.

Borchardt, G. (1989). Smectites. In Dixon, J.B., Weed, S.B., (Eds.)., Minerals in Soil Environments (pp: 675-727). 2nd ed (Soil Science Society of America, Madison, WI.

Christopher, R.B., & Tony, J.V., (2008). Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Research, 108, 14–31.

Fageria, N.K., & Stone, L. (2005). Physical chemical biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition, 29, 1327-1356.

Gee, G.H., & Bauder, J.W. (1986). Particle size analysis. In Klute, A., (ed), Methods of Soil Analysis, Part I (pp: 339-404) (). ASA, Madison, WI..

Gholami, L. (2011). Effect of  arbuscular  mycorrhiza, organic matter, and zinc rate, on chemical forms of zinc and corn responses on a calcareous soil. M.Sc. Univ. Shiraz, Iran. 129 pp. (In Persian)

Goulding, K.W.T. (1987). Potassium fixation and release. In: Methodology in soil-K research. Proceeding of the 20th Colloquium, Int Potash Inst (pp: 137-154). Baden bei Wien, Austria.

 Helmke, P.A., & Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In Sparks, D.L., (Ed), Methods of soil analysis Part 3 (pp: 551-573). SSSA Book Ser. 5, SSSA, Madison, WI.

Hinsinger, P., & Jaillard, B. (1993). Root-induced release of interlayer potassium and vermiculitization of phogopite as related to potassium depletion in the rhizosphere of ryegrass. Soil Science, 44, 525-534.

Hinsinger, P., Jaillard, B., & Dufey, J.E. (1992). Rapid weathering of trioctahedral mica by the roots of ryegrass. Soil Science Society of America Journal, 56, 977-982.

Hochholdinger, F. (2009). The Maize Root System: Morphology, Anatomy and Genetics. In Bennetzen, J., Hake, S., (Ed), The Handbook of Maize (pp. 145-160) Springer, New York, Inc.

Huang, P.M., Zhou, J.M., Xie, J.C., & Wang, M.K. (2005). Potassium in Soils. In Daniel Hillel, et al., (Ed), Encyclopedia of Soils in the Environment (pp: 303-314). Academic Press, New York, USA,.

Jackson, M.L. (1975). Soil Chemical Analysis. Advanced Course. University of Wisconsin, College of Agric, Dept of Soils, Madison, WI. 894 pp.

Jia, X.L., & Marion, L.J. (2003). Potassium release on drying of soil samples from a variety of weathering regimes and clay mineralogy in china. Geoderma, 35, 197-208.

Jones, M.M., Osmond, C.E., & Turner, N.C. (1980). Accumulation of Solutes in leaves of Sorghum and Sunflower in response to water deficits. Australian Journal of Plant Physiology, 7, 193-205.

Kittric, J.A., & Hope, E.W. (1963). A procedure for the particle size separation of soil for X-ray diffraction analysis. Soil Science Society of America Journal, 96, 312-325.

Kormanik, P.P., & McGraw, A.C. (1982). Quantification of Vesicular-arbuscular Mycorrhizae in Plant Roots. In Schenck, N.C., (Ed). Methods and Principles of Mycorrhizal Research (pp: 37-45). American Phytopathological Society, St. Paul.

Leyval, C., & Berthelin, J. (1991). Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Science Society of America Journal, 55(4), 1009-1016.

Lian, B., Wang, B., Pan, M., Liu, C., & Teng, H.H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta ,72, 87-98.

Malekzade, E. (2010). Study of interaction between plant growth promoting rhizobacteria (PGPR) and vesicular-arbuscularmycorrhizal fungus on growth index and heavy metals uptake of Cd and Ni on maize plant. M.Sc.Univ. Tehran. Iran. 220 pp. (In Persian)

Malekzade, E., Alikhani, H.A., Savaghebi, G.R., & Zarei, M. (2010). Resistance to nickel and cadmium of indigenous and non-indigenous plant growth promoting rhizobacteria (PGPRs) to heavy metal contaminated soils. Iranian Journal of Soil and Water Research, 41(2), 257-263.(In Persian)

Martin, W.H., & Sparks, D.L. (1985). On the behavior of nonexchaneable potassium in soils. Communication in Soil Science and Plant Analysis, 16, 133-162.

Mclean, E.O., & Watson, M.E. 1985. Soil measurements of plant available potassium. In Munson, R.D., (Ed) Potassium in agriculture (pp: 278-309).  SSSA, Madison.

Mehraban, A., Vazan, S., Naroui-Rad, M.R., & Ardakany, A. R. (2009). Effect of vesicular-arbuscularmycorrhiza (VAM) on yield of sorghum cultivars. Journal of Food, Agriculture and Environment, 7, 461-463.

Mengel, K. (1985). Dynamics and availability of major nutrient in soils. Advances in Soil Science, 1, 65-131.

Mojallali, H., & Weed, S.B. (1978). Weathering of micas by mycorrhizal soybean plants. Soil Science Society of America Journal, 42, 367-372.

Morovat, A. (2011). Influence of arbuscular mycorrhizal fungus and phosphorus levels on distribution of inorganic phosphorus forms in the calcareous rhizosphere soils of sunflower (Helianthus annuus L.) and maize (Zea mayz L.) cultivars.  M.Sc. Shiraz University. Iran. 90 pp. (In Persian)

Naderizadeh, Z., Khademi, H.,  & Arocena, J.M. (2010). Organic matter induced mineralogical changes in clay-sized phlogopite and muscovite in alfalfa rhizosphere. Geoderma, 159, 296-303.

Najafighiri, M. (2010). Morphological characteristics and mineralogy and potassium status in soils of Fars Province. Ph.D. Univ. Shiraz. Iran.(In Persian)

Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. In Sparks, D.L., (Ed), Methods of Soil Analysis part 3: Chemical methods (pp: 961-1010). Soil SciSocAm and Am Soc Agro, Madison, WI..

Olk, D.C., Gassman, K.G., & Carlson, R.M. (1995). Kinetics of potassium fixation in vermiculite soils under different moisture regims. Soil Science Society of America Journal ,59, 423-429.

Scott, A.D., & Smith, S.J. (1968). Mechanism for soil potassium release by drying. Soil Science Society of America Journal, 32, 443-444.

Sepaskhah, A.R., & Yarami, N. (2009). Interaction effects of irrigation regime and salinity on flower yield and growth of saffron. Journal of Horticultural Science and Biotechnology,  84(2), 216-222.

Smith, S.E.,  & Read, D.J. (2008). Mycorrhizal symbiosis. London, UK.  Academic Press, 787 pp Sparks, D.L. (1987). Potassium dynamics in soils. Advances in Soil Science,6, 1-63.

Sparks, D.L., & Huang, P.M. (1985). Physical chemistry of soil potassium. In Munson, R.D., (Ed), Potassium in Agriculture (pp: 201-276). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison WI.

Steffens, D., & Sparks, D.L. (1997). Kinetics of non-exchangeable ammonium release from soils. Soil Science Society of America Journal ,61, 455-462.

Sugumaran, P., & Janarthanan, B. (2007). Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultural Sciences, 3 (3), 350-355.

Summer, M.E., & Miller, W.P. (1996). Cation exchange capacity and exchange coefficient. In Sparks, D.L., (Ed), Methods of Soil Analysis Part 3: Chemical Methods, (pp: 1201-1230). Soil Science Society of America & America Society of Agronomy, Madison, WI.

Thomas, G.W. (1996). Soil pH and soil acidity. In Sparks, D.L., (Ed), Methods of Soil Analysis Part 3: Chemical Methods, (pp: 475-490). Soil Science Society of America & America Society of Agronomy, Madison, WI.

Tributh, H., Boguslawski, E.V., Liers, A.V., Steffens, D., & Mengel, K. 1987. Effect of potassium removal by crops on transformation of illite clay minerals. Soil Science, 143, 404-409.

Ullman, W.J., & Welch, S.A. (2002). Organic ligands and feldspar dissolution. In Hellmann, R., Wood, S.A., (Eds), Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar (pp: 3-35.). Vol. 7, The Geochemical Society..

Vandevivere, P., Welch, S.A., Ullman, W.J., & Krichman, D. L. (1994). Enhanced dissolution of silicate mineral by bacteria at near-neutral pH. Microbial Ecology, 27, 241-251.

Wang, J.G., Zhang, F.S., Zhang, X.L., & Cao, Y.P. (2000). Release of potassium from K-bearing minerals: Effect of plant roots under P deficiency. Nutrient Cycling in Agroecosystems, 56(1), 45-52.

Yuan, L., Huang, J., Li, X., &  Christie, P. (2004). Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant  and Soil, 262, 351-361.

Zarei, M. (2008). Diversity of arbuscular mycorrhizal fungi in heavy metal polluted soils and their effectiveness in phytoremediation. Doctoral Thesis. Univ. Tehran. Iran. (In Persian)

Zarei, M., Saleh-Rastin, N., Alikhani, H.A., & Aliasgharzadeh, N. (2006). Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscularmycorrhizal fungi. Journal of Plant Nutrition, 29(8), 1509-1522.

Zarei, M., Saleh-Rastin, N., Salehi Jouzani, G.H., Savaghebi G.H., & Buscot, F. (2008). Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 44, 381-391.

Zhou, J., & Huang, P.M. (2007). Kinetics of potassium release from illite as influenced by different phosphates. Geoderma, 138, 221-228.